Skip to main content

Advertisement

Log in

Investigation of holocellulose-lignin interactions during pyrolysis of wood meal by TGA-FTIR

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Pyrolysis of wood meal, a holocellulose-lignin mixture, holocellulose, and lignin was carried out using TGA-FTIR to investigate the effects of holocellulose-lignin interactions on the pyrolysis behavior of wood meal, in this study. The interactions between holocellulose and lignin showed no obvious effects on the pyrolysis behavior of holocellulose in wood meal at temperatures under 325 °C. However, the interactions did inhibit the pyrolysis of both lignin and holocellulose at higher temperatures, probably because of the high energy needed to dissociate the covalent linkages between holocellulose and lignin. Only a portion of covalent linkages were cracked at the temperatures of 215–395 °C, whereas they could be just barely destroyed at 395–565 °C. The char generated from holocellulose that was connected with lignin by unabridged covalent linkages would inhibit the decomposition of lignin at high pyrolysis temperatures by adsorbing on its surface, resulting in a higher char residue yield compared to that of the holocellulose-lignin mixture after pyrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ma LL, Wang TJ, Liu QY, Zhang XH, Ma WC, Zhang Q (2012) A review of thermal-chemical conversion of lignocellulosic biomass in China. Biotechnol Adv 30:859–873. https://doi.org/10.1016/j.biotechadv.2012.01.016

    Article  Google Scholar 

  2. Wang S, Dai G, Yang H, Luo Z (2017) Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review. Prog Energy Combust Sci 62:33–86. https://doi.org/10.1016/j.pecs.2017.05.004

    Article  Google Scholar 

  3. Lazdovica K, Liepina L, Kampars V (2015) Comparative wheat straw catalytic pyrolysis in the presence of zeolites, Pt/C, and Pd/C by using TGA-FTIR method. Fuel Process Technol 138:645–653. https://doi.org/10.1016/j.fuproc.2015.07.005

    Article  Google Scholar 

  4. Anca-Couce A (2016) Reaction mechanisms and multi-scale modelling of lignocellulosic biomass pyrolysis. Prog Energy Combust Sci 53:41–79. https://doi.org/10.1016/j.pecs.2015.10.002

    Article  Google Scholar 

  5. Ma ZQ, Chen DY, Gu J, Bao BF, Zhang QS (2015) Determination of pyrolysis characteristics and kinetics of palm kernel shell using TGA-FTIR and model-free integral methods. Energ Convers Manage 89:251–259. https://doi.org/10.1016/j.enconman.2014.09.074

    Article  Google Scholar 

  6. Grilc M, Likozar B, Levec J (2014) Hydrodeoxygenation and hydrocracking of solvolysed lignocellulosic biomass by oxide, reduced and sulphide form of NiMo, Ni, Mo and Pd catalysts. Appl Catal B-Environ 150:275–287. https://doi.org/10.1016/j.apcatb.2013.12.030

    Article  Google Scholar 

  7. Bgattacgarjee N, Biswas AB (2018) Pyrolysis of Alternanthera philoxeroides (alligator weed): effect of pyrolysis parameter on product yield and characterization of liquid product and bio char. J Energy Inst 91:605–618. https://doi.org/10.1016/j.joei.2017.02.011

    Article  Google Scholar 

  8. Campuzano F, Brown RC, Martinez JD (2019) Auger reactors for pyrolysis of biomass and wastes. Renew Sust Energ Rev 102:372–409. https://doi.org/10.1016/j.rser.2018.12.014

    Article  Google Scholar 

  9. Kan T, Strezov V, Evans TJ (2016) Lignocellulosic biomass pyrolysis: a review of product properties and effects of pyrolysis parameters. Renew Sust Energ Rev 57:1126–1140. https://doi.org/10.1016/j.rser.2015.12.185

    Article  Google Scholar 

  10. Kim SS, Agblevor FA (2014) Thermogravimetric analysis and fast pyrolysis of milkweed. Bioresour Technol 169:367–373. https://doi.org/10.1016/j.biortech.2014.06.079

    Article  Google Scholar 

  11. Muradov N, Fidalgo B, Gujar AC, T-Raissi A (2010) Pyrolysis of fast-growing aquatic biomass-Lemna minor (duckweed): characterization of pyrolysis products. Bioresour Technol 101:8424–8428. https://doi.org/10.1016/j.biortech.2010.05.089

    Article  Google Scholar 

  12. Liu ZG, Han GH (2015) Production of solid fuel biochar from waste biomass by low temperature pyrolysis. Fuel 158:159–165. https://doi.org/10.1016/j.fuel.2015.05.032

    Article  Google Scholar 

  13. Mckendry P (2002) Energy production from biomass (part 1): overview of biomass. Bioresour Technol 83:37–46. https://doi.org/10.1016/S0960-8524(01)00118-3

    Article  Google Scholar 

  14. Haykiri-Acma H, Yaman S, Kucukbayrak S (2010) Comparison of the thermal reactivities of isolated lignin and holocellulose during pyrolysis. Fuel Process Technol 91:759–764. https://doi.org/10.1016/j.fuproc.2010.02.009

    Article  Google Scholar 

  15. Dionisi D, Anderson JA, Aulenta F, MaCue A, Paton G (2015) The potential of microbial processes for lignocellulosic biomass conversion to ethanol: a review. J Chem Technol Biotechnol 90:366–383. https://doi.org/10.1002/jctb.4544

    Article  Google Scholar 

  16. Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29:675–685. https://doi.org/10.1016/j.biotechadv.2011.05.005

    Article  Google Scholar 

  17. Yu J, Paterson N, Blamey J, Millan M (2017) Cellulose, xylan and lignin interactions during pyrolysis of lignocellulosic biomass. Fuel 191:140–149. https://doi.org/10.1016/j.fuel.2016.11.057

    Article  Google Scholar 

  18. Wu SL, Shen DK, Hu J, Zhang HY, Xiao R (2016) Cellulose-hemicellulose interactions during fast pyrolysis with different temperatures and mixing methods. Biomass Bioenergy 95:55–63. https://doi.org/10.1016/j.biombioe.2016.09.015

    Article  Google Scholar 

  19. Wu SL, Shen DK, Hu J, Zhang HY, Xiao R (2016) Cellulose-lignin interactions during fast pyrolysis with different temperatures and mixing methods. Biomass Bioenergy 90:209–217. https://doi.org/10.1016/j.biombioe.2016.04.012

    Article  Google Scholar 

  20. Demibas A (2007) The influence of temperature on the yields of compounds existing in bio-oils obtained from biomass samples via pyrolysis. Fuel Process Technol 88:591–597. https://doi.org/10.1016/j.fuproc.2007.01.010

    Article  Google Scholar 

  21. Mettler MS, Mushrif SH, Paulsen AD, Javadekar AD, Vlachos DG, Dauenhauer PJ (2012) Revealing pyrolysis chemistry for biofuels production: conversion of cellulose to furans and small oxygenates. Energy Environ Sci 5:5414–5424. https://doi.org/10.1039/C1EE02743C

    Article  Google Scholar 

  22. Liu Q, Zhong ZP, Wang SR, Luo ZY (2011) Interactions of biomass components during pyrolysis: A TG-FTIR study. J Anal Appl Pyrolysis 90:213–218. https://doi.org/10.1016/j.jaap.2010.12.009

    Article  Google Scholar 

  23. Fushimi C, Katayama S, Tsutsumi A (2009) Elucidation of interaction among cellulose, lignin and xylan during tar and gas evolution in steam gasification. J Anal Appl Pyrolysis 86:82–89. https://doi.org/10.1016/j.jaap.2009.04.008

    Article  Google Scholar 

  24. Rowell RH (2012) Handbook of wood chemistry and wood composites, 2nd edn. Taylor & Francis, Boca Raton, Florida

    Google Scholar 

  25. Schnidt M, Gierlinger N, Schade U, Rogge T, Grunze M (2006) Polarized infrared microspectroscopy of single spruce fibers: hydrogen bonding in wood polymers. Biopolymers 83:546–555. https://doi.org/10.1002/bip.20585

    Article  Google Scholar 

  26. Akerholm M, Salmen L (2001) Interactions between wood polymers studied by dynamic FT-IR spectroscopy. Polymer 42:963–969. https://doi.org/10.1016/S0032-3861(00)00434-1

    Article  Google Scholar 

  27. Lawoka M, Henriksson G, Gellerstedt G (2006) Characterization of lignin-carbohydrate complexes (LCCs) of spruce wood (Picea abies L.) isolated with two method. Holzforschung 60:156–161. https://doi.org/10.1515/HF.2006.025

    Article  Google Scholar 

  28. Zhang J, Choi YS, Yoo CG, Kim TH, Brown RC, Shanks BH (2015) Cellulose-hemicellulose and cellulose-lignin interactions during fast pyrolysis. ACS Sustain Chem Eng 3:293–301. https://doi.org/10.1021/sc500664h

    Article  Google Scholar 

  29. Zhang XL, Yang WH, Blasiak W (2011) Modeling study of woody biomass: interactions of cellulose, hemicellulose, and lignin. Energy Fuel 25:4786–4795. https://doi.org/10.1021/ef201097d

    Article  Google Scholar 

  30. Kosikova B, Ebringerova A (1994) Lignin-carbohydrate bonds in a residual soda spruce pulp lignin. Wood Sci Technol 28:291–296. https://doi.org/10.1007/BF00204215

    Article  Google Scholar 

  31. Yang W, Fang MN, Xu H, Wang H, Wu SJ, Zhou J, Zhu SX (2019) Interactions between holocellulose and lignin during hydrolysis of sawdust in subcritical water. ACS Sustain Chem Eng 7:10583–10594. https://doi.org/10.1021/acssuschemeng.9b01127

    Article  Google Scholar 

  32. Guo X, Zhao Z, Singh S, Qiao D (2019) Tri-pyrolysis: a thermos-kinetic characterisation of polyethylene, cornstalk, and anthracite coal using TGA-FTIR analysis. Fuel 252:393–402. https://doi.org/10.1016/j.fuel.2019.03.143

    Article  Google Scholar 

  33. Kanca A (2020) Investigation on pyrolysis and combustion characteristics of low quality lignite, cotton waste, and their blends by TGA-FTIR. Fuel 263:116517. https://doi.org/10.1016/j.fuel.2019.116517

    Article  Google Scholar 

  34. Cai HM, Liu JY, Xie WM, Kuo JH, Buyukada M, Evrendilek F (2019) Pyrolytic kinetics, reaction mechanisms and products of waste tea via TG-FTIR and Py-GC/MS. Energ Convers Manage 184:436–447. https://doi.org/10.1016/j.enconman.2019.01.031

    Article  Google Scholar 

  35. Tian LH, Shen BX, Xu H, Li FK, Wang YY, Singh S (2016) Thermal behavior of waste tea pyrolysis by TG-FTIR analysis. Energy 103:533–542. https://doi.org/10.1016/j.energy.2016.03.022

    Article  Google Scholar 

  36. Fasina O, Littlefield B (2012) TG-FTIR analysis of pecan shells thermal decomposition. Fuel Process Technol 102:61–66. https://doi.org/10.1016/j.fuproc.2012.04.015

    Article  Google Scholar 

  37. Zabeti M, Baltrusaitis J, Seshan K (2016) Chemical routes to hydrocarbons from pyrolysis of lignocellulose using Cs promoted amorphous silica alumina catalyst. Catal Taday 269:156–165. https://doi.org/10.1016/j.cattod.2015.11.024

    Article  Google Scholar 

  38. Wang JQ, Shen BX, Kang DR, Yuan P, Wu CF (2019) Investigate the interactions between biomass components during pyrolysis using in-situ DRIFTS and TGA. Chem Eng Sci 195:767–776. https://doi.org/10.1016/j.ces.2018.10.023

    Article  Google Scholar 

  39. Pang CH, Gaddipatti S, Tucker G, Lester E, Wu T (2014) Relationship between thermal behaviour of lignocellulosic components and properties of biomass. Bioresour Technol 172:312–320. https://doi.org/10.1016/j.biortech.2014.09.042

    Article  Google Scholar 

  40. Raveendran K, Ganesh A, Khilar K (1996) Pyrolysis characteristics of biomass and biomass components. Fuel 75:987–998. https://doi.org/10.1016/0016-2361(96)00030-0

    Article  Google Scholar 

  41. Chen L, Yu ZS, Liang JY, Liao YF, Ma XQ (2018) Co-pyrolysis of Chlorella vulgaris and kitchen waste with different additives using TG-FTIR and Py-GC/MS. Energ Convers Manage 177:582–591. https://doi.org/10.1016/j.enconman.2018.10.010

    Article  Google Scholar 

  42. Chen DY, Liu D, Zhang HR, Chen Y, Li Q (2015) Bamboo pyrolysis using TG–FTIR and a lab-scale reactor: analysis of pyrolysis behavior, product properties, and carbon and energy yields. Fuel 148:79–86. https://doi.org/10.1016/j.fuel.2015.01.092

    Article  Google Scholar 

  43. Fu P, Yi WM, Bai XY, Li ZH, Hu S, Xiang J (2011) Effect of temperature on gas composition and char structural features of pyrolyzed agricultural residues. Bioresour Technol 102:8211–8219. https://doi.org/10.1016/j.biortech.2011.05.083

    Article  Google Scholar 

  44. Gao NB, Li AM, Quan C, Du L, Duan Y (2013) TG-FTIR and Py-GC/MS analysis on pyrolysis and combustion of pine sawdust. J Anal Appl Pyrolysis 100:26–32. https://doi.org/10.1016/j.jaap.2012.11.009

    Article  Google Scholar 

  45. Ong HC, Chen WH, Singh Y, Gan YY, Chen CY, Show PL (2020) A state-of-the-art review on thermochemical conversion of biomass for biofuel production: a TG-FTIR approach. Energ Convers Manage 209:112634. https://doi.org/10.1016/j.enconman.2020.112634

    Article  Google Scholar 

  46. Ubando AT, Chen WH, Ong HC (2019) Iron oxide reduction by graphite and torrefied biomass analyzed by TG-FTIR for mitigating CO2 emissions. Energy 180:967–977. https://doi.org/10.1016/j.energy.2019.05.149

    Article  Google Scholar 

  47. Hosoya T, Kawamoto H, Saka S (2007) Cellulose–hemicellulose and cellulose–lignin interactions in wood pyrolysis at gasification temperature. J Anal Appl Pyrolysis 80:118–125. https://doi.org/10.1016/j.jaap.2007.01.006

    Article  Google Scholar 

  48. Zhou H, Long YQ, Meng AH, Chen S, Li QH, Zhang YG (2015) A novel method for kinetic analysis of pyrolysis of hemicellulose, cellulose, and lignin in TGA and macro-TGA. RSC Adv 5:26509–26516. https://doi.org/10.1039/C5RA02715B

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from the Natural Science Foundation of Zhejiang Province China (LQ19B060009, LY19E060003) and Zhejiang Province Key R&D Program Projects of China (2019C02063) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengji Wu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 15856 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Yang, F., Zhang, X. et al. Investigation of holocellulose-lignin interactions during pyrolysis of wood meal by TGA-FTIR. Biomass Conv. Bioref. 13, 3731–3740 (2023). https://doi.org/10.1007/s13399-021-01455-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-01455-4

Keywords

Navigation