Skip to main content
Log in

Ultra-Refractory Hf4ZrC5–(Hf,Zr)B2 Composites by Electrothermal Explosion under Pressure

  • Published:
International Journal of Self-Propagating High-Temperature Synthesis Aims and scope Submit manuscript

Abstract

Ultra-refractory Hf4ZrC5–(Hf,Zr)B2 composites were prepared by electrothermal explosion (ETE) under pressure in a one-stage process, with special emphasis on the influence of high-energy ball milling (HEBM) of starting Hf–Zr–C–B powder mixtures. Synthesized Hf4ZrC5–(Hf,Zr)B2 composites had a grain size of 0.5–1.0 μm and a porosity of 10–12%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Chandran, B.S.N., Devapal, D., and Payadakkam Veedu, Synthesis of ultra high temperature ceramic zirconium carbide for space applications, Trans. Indian Natl. Acad. Eng., 2020. https://doi.org/10.1007/s41403-020-00176-w

  2. Monteverde, F., Bellosi, A., and Scatteia, L., Processing and properties of ultra-high temperature ceramics for space applications, Mater. Sci. Eng. A, 2008, vol. 485, nos. 1–2, pp. 415–421. https://doi.org/10.1016/j.msea.2007.08.054

    Article  CAS  Google Scholar 

  3. Nasseri, M.M., Comparison of HfB2 and ZrB2 behaviors for using in nuclear industry, Ann. Nucl. Energy, 2017, vol. 114, pp. 603–606. https://doi.org/10.1016/j.anucene.2017.12.060

    Article  CAS  Google Scholar 

  4. Nekahi, S., Vaferi, K., Vajdi, M., Moghanlou, F.S., Asl, M.S., and Shokouhimehr, M., A numerical approach to the heat transfer and thermal stress in a gas turbine stator blade made of HfB2, Ceram. Int., 2019, vol. 45, no. 18, pt A, pp. 24060–24069. https://doi.org/10.1016/j.ceramint.2019.08.112

  5. Hans, K., Latha, S., Bera, P., and Barshilia, H.C., Hafnium carbide based solar absorber coatings with high spectral selectivity, Solar Energy Mater. Solar Cells, 2018, vol. 185, pp. 1–7. https://doi.org/10.1016/j.solmat.2018.05.005

    Article  CAS  Google Scholar 

  6. Fahrenholtz, W.G. and Hilmas, G.E., Ultra-high temperature ceramics: Materials for extreme environments, Scr. Mater., 2017, vol. 129, pp. 94–99. https://doi.org/10.1016/j.scriptamat.2016.10.018

    Article  CAS  Google Scholar 

  7. Nachiappan, C., Rangaraj, L., Divakar, C., and Jayaram, V., Synthesis and densification of monolithic zirconium carbide by reactive hot pressing, J. Am. Ceram. Soc., 2010. https://doi.org/10.1111/j.1551-2916.2010.03608.x

  8. Aydinyan, S., ZrC based ceramics by high pressure high temperature SPS technique, Key Eng. Mater., 2019, vol. 799, pp. 125–130. https://doi.org/10.4028/www.scientific.net/KEM.799.125

    Article  Google Scholar 

  9. Nayebi, B., Parvin, N., Mohandesi, J.A., and Asl, M.S., Densification and toughening mechanisms in spark plasma sintered ZrB2-based composites with zirconium and graphite additives, Ceram. Int., 2020, vol. 46, no. 9, pp. 13685–13694. https://doi.org/10.1016/j.ceramint.2020.02.156

    Article  CAS  Google Scholar 

  10. Nisar, A. and Balani, K. Phase and microstructural correlation of spark plasma sintered HfB2–ZrB2 based ultra-high temperature ceramic composites, Coatings, 2017, vol. 7, no. 8, 110. https://doi.org/10.3390/coatings7080110

    Article  CAS  Google Scholar 

  11. Patsera, E.I., Levashov, E.A., Kurbatkina, V.V., and Kovalev, D.Y., Production of ultra-high temperature carbide (Ta,Zr)C by self-propagating high-temperature synthesis of mechanically activated mixtures, Ceram. Int., 2015, vol. 41, no. 7, pp. 8885–8893. https://doi.org/10.1016/j.ceramint.2015.03.146

    Article  CAS  Google Scholar 

  12. Kurbatkina, V.V., Patsera, E.I., Levashov, E.A., and Vorotilo, S., SHS processing and consolidation of Ta–Ti–C, Ta–Zr–C, and Ta–Hf–C carbides for ultra-high-temperatures application, Adv. Eng. Mater., 2018,vol. 20, no. 8, 1701075. https://doi.org/10.1002/adem.201701075

    Article  CAS  Google Scholar 

  13. Kurbatkina, V.V., Patsera, E.I., Levashov, E.A., and Timofeev, A.N., Self-propagating high-temperature synthesis of single-phase binary tantalum–hafnium carbide (Ta,Hf)C and its consolidation by hot pressing and spark plasma sintering, Ceram. Int., 2018, vol. 44, no. 4, pp. 4320–4329. https://doi.org/10.1016/j.ceramint.2017.12.024

    Article  CAS  Google Scholar 

  14. Simonenko, E.P., Ignatov, N.A., Simonenko, N.P., Ezhov, Yu.S., Sevast’yanov, V.G., and Kuznetsov, N.T., Synthesis of highly dispersed super-refractory tantalum–zirconium carbide Ta4ZrC5 and tantalum–hafnium carbide Ta4HfC5 via sol–gel technology, Russ. J. Inorg. Chem., 2011, vol. 56, no. 11, pp. 1681–1687. https://doi.org/10.1134/S0036023611110258

    Article  CAS  Google Scholar 

  15. Venugopal, S., Boakye, E.E., Paul, A., Keller, K., Mogilevsky, P., Vaidhyanathan, B., Binner, J.G.P., Katz, A., and Brown, P.M., Sol–gel synthesis and formation mechanism of ultrahigh temperature ceramic: HfB2, J. Am. Ceram. Soc., 2013, vol. 97, no. 1, pp. 92–99. https://doi.org/10.1111/jace.12654

    Article  CAS  Google Scholar 

  16. Shcherbakov, V.A., Shcherbakov, A.V., and Bostandzhiyan, S.A., Electrothermal explosion of a titanium–soot mixture under quasi-static compression: II. Kinetics and mechanism of interaction in a titanium–soot mixture, Combust. Explos. Shock Waves, 2019, vol. 55, no. 1, pp. 82–88. https://doi.org/10.1134/S001050821901009X

    Article  Google Scholar 

  17. Shcherbakov, V.A., Gryadunov, A.N., Vadchenko, S.G., and Alymov, M.I., Exothermic synthesis and consolidation of single-phase ultra-high-temperature composite Ta4ZrC5, Dokl. Chem., 2019, vol. 488, no. 1, pp. 242–245. https://doi.org/10.1134/S0012500819090027

    Article  CAS  Google Scholar 

  18. Lubnin, A.N., Dorofeev, G.A., Nikonova, R.M., Mukhgalin, V.V., and Lad’yanov, V.I., Stacking faults and mechanisms of strain-induced transformations of hcp metals (Ti, Mg) during mechanical activation in liquid hydrocarbons, Phys. Solid State, 2017, vol. 59, no. 11, pp. 2226–2238. https://doi.org/10.1134/S1063783417110191

    Article  CAS  Google Scholar 

  19. Eremina, M.A., Lomaeva, S.F., Burnyshev, I.N., and Kalyuzhnyi, D.G., Mechanosynthesis of precursors for TiC–Cu cermets, Russ. Phys. J., 2018, vol. 60, no 12, pp. 2155–2163. https://doi.org/10.1007/s11182-018-1340-7

    Article  CAS  Google Scholar 

  20. Shiryaev, A.A., Thermodynamics of SHS: An advanced approach, Int. J. Self-Propag. High-Temp. Synth., 1995, vol. 4, no. 4, pp. 351–362.

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was performed using the set of modern scientific instruments available for multiple accesses at the ISMAN Center of Shared Services.

Funding

This work was financially supported by the Russian Foundation for Basic Research (project no. 19-08-01085-a).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. A. Shcherbakov or A. N. Gryadunov.

Additional information

Translated by Yu. Scheck

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shcherbakov, V.A., Gryadunov, A.N. & Alymov, M.I. Ultra-Refractory Hf4ZrC5–(Hf,Zr)B2 Composites by Electrothermal Explosion under Pressure. Int. J Self-Propag. High-Temp. Synth. 30, 36–39 (2021). https://doi.org/10.3103/S1061386221010118

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1061386221010118

Keywords:

Navigation