Skip to main content
Log in

Cu–Sb Solder Alloy by Combustion Synthesis: Structural Characterization and Magnetic Properties

  • Published:
International Journal of Self-Propagating High-Temperature Synthesis Aims and scope Submit manuscript

Abstract

Lead-free Cu–Sb solder alloys of nominal composition Cu–20 at % Sb were fabricated by SHS and electrothermal explosion (ETE) and characterized by XRD, SEM, and vibrating sample magnetometry (VSM). Combustion products were found to represent a mixture of δ-Cu11Sb3, β-Cu3Sb, and Cu. The ETE and SHS methods were recommended as a facile route to synthesis of Cu–Sb intermetallics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Zhao, M., Zhang, L., Liu, Z.Q., Xiong, M.Y., and Sun, L., Structure and properties of Sn–Cu lead-free solders in electronics packaging, Sci. Technol. Adv. Mater., 2019, vol. 20, no. 1, pp. 421–444. https://doi.org/10.1080/14686996.2019.1591168

    Article  CAS  Google Scholar 

  2. Zeng, K. and Tu, K.N., Six cases of reliability study of Pb-free solder joints in electronic packaging technology, Mater. Sci. Eng., R, 2002, vol. 38, no. 2, pp. 55–105. https://doi.org/10.1016/S0927-796X(02)00007-4

    Article  Google Scholar 

  3. Lauro, P., Kang, S.K., Choi, W.K., and Shih, D.Y., Effects of mechanical deformation and annealing on the microstructure and hardness of Pb-free solders, J. Electron. Mater., 2003, vol. 32, no. 12, pp. 1432–1440. https://doi.org/10.1007/s11664-003-0112-4

    Article  CAS  Google Scholar 

  4. Seo, S.K., Kang, S.K., Shih, D.Y., and Lee, H.M., The evolution of microstructure and microhardness of Sn–Ag and Sn–Cu solders during high temperature aging, Microelectron. Reliab., 2009, vol. 49, no. 3, pp. 288–295. https://doi.org/10.1016/j.microrel.2008.11.014

    Article  CAS  Google Scholar 

  5. El-Ashram, T., The relation between valence, axial ratio, Young’s modulus, and resistivity of rapidly solidified tin-based eutectic alloys, J. Mater. Sci.: Mater. Electron., 2005, vol. 16, no. 8, pp. 501–505. https://doi.org/10.1007/s10854-005-2724-3

    Article  CAS  Google Scholar 

  6. Felberbaum, M., Ventura, T., Rappaz, M., and Dahle, A.K., Microstructure formation in Sn–Cu–Ni solder alloys, JOM, 2011, vol. 63, no. 10, pp. 52–55. https://doi.org/10.1007/s11837-011-0175-2

    Article  CAS  Google Scholar 

  7. Wu, J., Xue, S.B., Wang, J.W., and Wang, J.X., Comparative studies on microelectronic reliability issue of Sn whisker growth in Sn–0.3Ag–0.7Cu–1Pr solder under different environments, Microelectron. Reliab., 2017, vol. 79, pp. 124–135. https://doi.org/10.1016/j.microrel.2017.10.020

    Article  CAS  Google Scholar 

  8. Mosby, J.M. and Prieto, A.L., Direct electrodeposition of Cu2Sb for lithium-ion battery anodes, J. Am. Chem. Soc., 2008, vol. 130, no. 32, pp. 10656–10661. https://doi.org/10.1021/ja801745n

    Article  CAS  Google Scholar 

  9. Chen, J., Yin, Z., Sim, D., Tay, Y.Y., Zhang, H., Ma, J., Hng, H.H., and Yan, Q., Controlled CVD growth of Cu–Sb alloy nanostructures, Nanotechnology, 2011, vol. 22, no. 32, 325602. https://doi.org/10.1088/0957-4484/22/32/325602

    Article  CAS  Google Scholar 

  10. Gao, J.R., Wang, N., and Wei, B., Rapid crystal growth in undercooled hypoeutectic Cu–Sb alloys, Mater. Sci. Forum, 2000, vol. 329–330, pp. 13–18. https://doi.org/10.4028/www.scientific.net/MSF.329-330.13

    Article  Google Scholar 

  11. Yao, W.J., Han, X.J., and Wei, B., High undercooling and rapid dendritic growth of Cu–Sb alloy in drop tube, Chin. Sci. Bull., 2002, vol. 47, no. 15, pp. 1312–1316. doi.org/10.1360/02tb9291

  12. Yao, W.J. and Wei, B., Nucleation and growth of β-Cu3Sb intermetallic compound in undercooled Cu–31% Sb eutectic alloy, J. Alloys Comp., 2004, vol. 366, nos. 1–2, pp. 165–170. https://doi.org/10.1016/S0925-8388(03)00738-2

    Article  CAS  Google Scholar 

  13. Gierlotka, W. and Jendrzejczyk–Handzlik, D., Thermodynamic description of the Cu–Sb binary system, J. Alloys Comp., 2009, vol. 484, nos. 1–2, pp. 172–176. https://doi.org/10.1016/j.jallcom.2009.05.056

    Article  CAS  Google Scholar 

  14. Ning, S., Bian, X., and Ren, Z., Correlation between viscous-flow activation energy and phase diagram in four systems of Cu-based alloys, Physica B, 2010, vol. 405, no. 17, pp. 3633–3637. https://doi.org/10.1016/j.physb.2010.05.055

    Article  CAS  Google Scholar 

  15. Argaman, N., Can elemental bismuth be a liquid crystal?, Phys. Lett. A, 2010, vol. 374, no. 38, pp. 3982–3986. https://doi.org/10.1016/j.physleta.2010.07.067

    Article  CAS  Google Scholar 

  16. Zhao, N., Pan, X.M., Ma, H.T., and Wang, L., Viscosity and surface tension of liquid Sn–Cu lead-free solders, J. Electron. Mater., 2009, vol. 405, no. 6, pp. 828–833. https://doi.org/10.1007/s11664-008-0611-4

    Article  CAS  Google Scholar 

  17. Knoll, W. and Steeb, S., Structure of molten copper–antimony alloys by combination of neutron and X-ray diffraction, Phys. Chem. Liq., 1973, vol. 4, no. 1, pp. 39–60. https://doi.org/10.1080/00319107308083822

    Article  CAS  Google Scholar 

  18. Guo, F., Zheng, H., Qin, J., Qin, X., Lu, T., Jia, Y., Xu, R., and Tian, X., Medium-range order and physical properties of Cu–20 at % Sb melts, J. Non-Cryst. Solids, 2012, vol. 358, no. 23, pp. 3327–3331. https://doi.org/10.1016/j.jnoncrysol.2012.09.007

    Article  CAS  Google Scholar 

  19. Fürtauer, S. and Flandorfer, H., A new experimental phase diagram investigation of Cu–Sb, Monatsh. Chem., 2012, vol. 143, pp. 1275–1287. https://doi.org/10.1007/s00706-012-0737-1

    Article  CAS  Google Scholar 

  20. Bendjemil, B., SHS-produced Ni–Mn–Al magnetic shape memory alloy, Int. J. Self-Propag. High-Temp. Synth., 2010, vol. 19, no. 2, pp. 110–113. https://doi.org/10.3103/S1061386210020056

    Article  CAS  Google Scholar 

  21. Bendjemil, B., Lankar, A., Benaldjia, A., Messadia, J., and Vrel, D., Combustion synthesis: Novel routes to novel molecular nanomaterials, Int. J. Self-Propag. High-Temp. Synth., 2013, vol. 22, no. 2, pp. 119–124. https://doi.org/10.3103/S1061386213020039

    Article  CAS  Google Scholar 

  22. Hafs, A., Benaldjia, A., and Hafs, T., Superconducting Nb3Al by combustion synthesis: Structural characterization. Int. J. Self-Propag. High-Temp. Synth., 2016, vol. 25, no. 3, pp. 159–165. https://doi.org/10.3103/S106138621603002X

    Article  CAS  Google Scholar 

  23. Bendjemil, B., Hafs, A., Benaldjia, A., and Vrel, D., Superconducting NbTi by combustion synthesis, Int. J. Self-Propag. High-Temp. Synth., 2012, vol. 21, no. 2, pp. 117–123. https://doi.org/10.3103/S1061386212020021

    Article  CAS  Google Scholar 

  24. Zeng, L., Zhang, J., Liao, J., and Qin, P., Phase relations in the Cu–La–Sb system at 693 K, J. Alloys Compd., 2006, vol. 425, nos. 1–2, pp.109–111. https://doi.org/10.1016/j.jallcom.2005.12.093

    Article  CAS  Google Scholar 

  25. Fedyna, L.O., Bodak, I., Fedorchuk, A.O., and Tokaychuk, Ya.O., The crystal structure of a new ternary antimonide: TmCu4–xSb2 (x = 1.065), J. Alloys Comp., 2005, vol. 394, nos. 1–2, pp. 156–159. https://doi.org/10.1016/j.jallcom.2004.10.026

    Article  CAS  Google Scholar 

  26. Fedyna, L.O., Fedorchuk, A.O., Mykhalichko, V.M., Shpyrka, Z.M., and Fedyna, M.F., Isothermal section of the phase diagram and crystal structures of the compounds in the ternary system Tm–Cu–Sb at 870 K, Solid State Sci., 2017, vol. 69, pp. 7–12. https://doi.org/10.1016/j.solidstatesciences.2017.05.003

    Article  CAS  Google Scholar 

  27. Zhai, W., Wang, B.J., Lu, X.Y., and Wei, B., Rapid solidification mechanism of highly undercooled ternary Cu40Sn45Sb15 alloy, Appl. Phys. A, 2015, vol. 121, pp. 273–281. https://doi.org/10.1007/s00339-015-9430-7

    Article  CAS  Google Scholar 

  28. Lee, C., Lin, C.Y., and Yen, Y.W., The 260°C phase equilibria of the Sn–Sb–Cu ternary system and interfacial reactions at the Sn–Sb/Cu joints, Intermetallics, 2007, vol. 15, no. 8, pp. 1027–1037. https://doi.org/10.1016/j.intermet.2006.12.002

    Article  CAS  Google Scholar 

  29. Chen, S., Zi, A., Gierlotka, W., Yang, C., Wang, C., Lin, S., and Hsu, C., Phase equilibria of Sn–Sb–Cu system, Mater. Chem. Phys., 2012, vol. 132, pp. 703–715. https://doi.org/10.1016/j.matchemphys.2011.11.088

    Article  CAS  Google Scholar 

  30. Liu, X.J., Wu, C., Yang, M.J., Zhu, J.H., Yang, S.Y., Shi, Z., Lu, Y., Han, J.J., and Wang, C.P., Phase equilibria in the Cu–Sn–Sb ternary system, J. Phase Equilib. Diffus., 2018, vol. 39, pp. 820–831. https://doi.org/10.1007/s11669-018-0681-9

    Article  CAS  Google Scholar 

  31. Amara, A., Abdennouri, N., Drici, A., Abdelkader, D., Bououdina, M., Chaffar Akkari, F., Khemiri, N., Kanzari, M., and Berneède, J.C., Nano-crystalline thermally evaporated Bi2Se3 thin films synthesized from mechanically milled powder, J. Electron. Mater., 2017, vol. 46, no. 8, pp. 4917–4923. https://doi.org/10.1007/s11664-017-5496-7

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to Prof A. Benaldjia, Department of Physics, Badji-Mokhtar University, Annaba, Algeria, for synthesis of the samples. We also acknowledge the members of group L3M-Annaba, Dr. S. Leboub, M. Mittri, and H. Zedouri, for taking SEM pictures and EDX measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hafs.

Additional information

The text was submitted by the authors in English.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamdi, S., Hafs, A. & Hafs, T. Cu–Sb Solder Alloy by Combustion Synthesis: Structural Characterization and Magnetic Properties. Int. J Self-Propag. High-Temp. Synth. 30, 30–35 (2021). https://doi.org/10.3103/S1061386221010040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1061386221010040

Keywords:

Navigation