Skip to main content
Log in

Subtle Details in Crystal Structure of SHS Products by DFT Calculations

  • Published:
International Journal of Self-Propagating High-Temperature Synthesis Aims and scope Submit manuscript

Abstract

Total energy ab-initio calculations for some SHS products were performed by DFT method using VASP program package. The results of calculations along with XRD results and crystallographic modeling were used to explain specific features of the composition/structure of selected SHS products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Konovalikhin, S.V. and Ponomarev, V.I., Carbon in boron carbide: The crystal structure of B11.4C3.6, Russ. J. Inorg. Chem., 2009, vol. 54, no. 2, pp. 197–203. https://doi.org/10.1134/S0036023609020053

    Article  Google Scholar 

  2. Kovalev, I.D., Ponomarev, V.I., Vershinnikov, V.I., and Konovalikhin, S.V., SHS of single crystals in the B–C–Mg system: Crystal structure of new modification of B25C4Mg1.42 = [B12]2[CBC][C2]Mg1.42, Int. J. Self-Propag. High-Temp. Synth., 2013, vol. 22, no. 3, pp. 163–165. https://doi.org/10.3103/S1061386213030047

    Article  CAS  Google Scholar 

  3. Ponomarev, V.I., Konovalikhin, S.V., Kovalev, I.D., Vershinnikov, V.I., and Borovinskaya, I.P., Synthesis and crystal structure of [B12]2[CBC][C2]Mg1.42, a new modification of B25C4Mg1.42, Mendeleev Commun., 2014, vol. 24, pp. 15–16. doi . 12.004https://doi.org/10.1016/j.mencom.2013

  4. Kovalev, I.D., Ponomarev, V.I., Konovalikhin, S.V., Kovalev, D.Yu., and Vershinnikov, V.I., SHS of boron carbide: Influence of combustion temperature, Int. J. Self-Propag. High-Temp. Synth., 2015, vol. 24, no. 1, pp. 33–37. https://doi.org/10.3103/S1061386215010045

    Article  Google Scholar 

  5. Yukhvid, V.I., SHS metallurgy: Fundamental and applied research, Adv. Mater. Technol., 2016, no. 4, pp. 22–34.

  6. Shchukin, A.S., Konovalikhin, S.V., Kovalev, D.Yu., and Sytschev, A.E., Composition and crystalline structure of ternary phases in the Ta–Ni–Al system, Russ. J. Non-Ferrous Met., 2020, vol. 61, no. 3, pp. 303–308.https://doi.org/10.3103/S1067821220030141

    Article  Google Scholar 

  7. Rogachev, A.S., Vadchenko, S.G., Shchukin, A.S., Kovalev, I.D., and Aronin, A.S., Self-propagating crystallization waves in the TiCu amorphous alloy, JETP Lett., 2016, vol. 104, no. 10, pp. 726–729. https://doi.org/10.1134/S0021364016220124

    Article  CAS  Google Scholar 

  8. Kresse, G. and Furthmuller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 1996, vol. 54, no. 16, 11169. https://doi.org/10.1103/PhysRevB.54.11169

    Article  CAS  Google Scholar 

  9. Kresse, G. and Furtmuller, J., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci., 1996, vol. 6, no. 1. pp. 15–50.https://doi.org/10.1016/0927-0256(96)00008-0

    Article  CAS  Google Scholar 

  10. Grimme, S., Antony, J., Ehrlich, S., and Krieg, H., A consistent and accurate ab initio parametrization of density functional dispersion correction (dft-d) for the 94 elements H–Pu, J. Chem. Phys., 2010, vol. 132, 154104. https://doi.org/10.1063/1.3382344

    Article  CAS  Google Scholar 

  11. Grimme, S., Ehrlich, S., and Goerigk, L., Effect of the damping function in dispersion corrected, J. Comput. Chem., 2011, vol. 32, pp. 1456–1465. doi.org/https://doi.org/10.1002/jcc.21759

    Article  CAS  Google Scholar 

  12. Konovalikhin, S.V., Chuev, I.I., Guda, S.A., and Kovalev, D.Yu., Formation enthalpy for TiCu as estimated in terms of density functional theory, Fiz. Met. Metalloved., 2020, V. 121, no. 12 (Accepted for press).

  13. Macrae, C.F., Bruno, I.J., Chisholm, J.A., Edgington, P.R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J., and Wood, P.A., Mercury CSD-2.0: New features for the visualization and investigation of crystal structures, J. Appl. Crystallogr., 2008, vol. 41, pp. 466–470. .https://doi.org/10.1107/S0021889807067908

    Article  CAS  Google Scholar 

  14. Safaraliev, G.K., Tverdye rastvory na osnove karbida kremniya (Solid Solutions Based on Silicon Carbide), Moscow: Fizmatlit, 2011, p. 44.

  15. Ponomarev, V.I., Kovalev, I.D., Konovalikhin, S.V., and Vershinnikov, V.I., Ordering of carbon atoms in boron carbide structure, Crystallogr. Rep., 2013, vol. 58, no. 3, pp. 422–426. https://doi.org/10.1134/S1063774513030188

    Article  CAS  Google Scholar 

  16. Konovalikhin, S.V., Ponomarev, V.I., Kovalev, D.Yu, and Guda, S.A., Boron carbide secrets, Russ. J. Gen. Chem., 2019, vol. 89, no. 10, pp. 2069–2074. https://doi.org/10.1134/S107036321907013X

    Article  CAS  Google Scholar 

  17. Gosset, D. and Colin, M., Boron carbides of various compositions: An improved method for X-rays characterization, J. Nucl. Mater., 1991, vol. 183, no. 3, pp. 161–173. https://doi.org/10.1016/0022-3115(91)90484-O

    Article  CAS  Google Scholar 

  18. Kwei, G.H. and Morozin, B., Structures of the boron-rich boron carbides from neutron powder diffraction: Implications for the nature of the inter-icosahedral chains, J. Phys. Chem. B, 1996, vol. 100, no. 19, pp. 8031–8039. doi.org/https://doi.org/10.1021/jp953235j

    Article  CAS  Google Scholar 

  19. Domnich, V., Reynaud, S., Haber, R.A., and Chhowalla, M., Boron carbide: Structure, properties, and stability under stress, J. Am. Ceram. Soc., 2011, vol. 94, no. 11, pp. 3605–3628. https://doi.org/10.1111/j.1551-2916.2011.04865.x

    Article  CAS  Google Scholar 

  20. Werheit, H., Boron carbide: Consistency of components, lattice parameters, fine structure and chemical composition makes the complex structure reasonable, Solid State Sci., 2016, vol. 60, pp. 45–54. https://doi.org/10.1016/j.solidstatesciences.2016.08.006

    Article  CAS  Google Scholar 

  21. Kislyi, P.S., Kizenkova, M.A., Bodnaruk, N.I., and Grabchuk, B.L., Karbid bora (Boron Carbide), Kiev: Naukova Dumka, 1988, pp. 37–41.

  22. Levashov, E.A., Rogachev, A.S., Kurbatkina, V.V., Maksimov, Yu.M., and Yukhvid, V.I., Perspektivnye SVS materialy i tekhnologii (Promising SHS Materials and Processes), Moscow: Izd. MISiS, 2011, p. 25.

  23. Moskovskikh, D.O., Paramonov, K.A., Nepapushev, A.A., Shkodich, N.F., and Mukasyan, A.S., Bulk boron carbide nanostructured ceramics by reactive spark plasma sintering, Ceram. Int., 2017, vol. 43, no. 11, pp. 8190–8194.https://doi.org/10.1016/j.ceramint.2017.03.145

    Article  CAS  Google Scholar 

  24. Kakazey, M., Vlasova, M., Gonzalez-Rodriguez, J.G., Dominguez-Patino, M., and Leder, R., EPR-characterization of carbon inclusions in boron carbide, J. Am. Ceram. Soc., 2004, vol. 87, no. 7, pp. 1336–1338. https://doi.org/10.1111/j.1151-2916.2004.tb07731.x

    Article  CAS  Google Scholar 

  25. Konovalikhin, S.V., Kovalev, D.Yu., and Ponomarev, V.I., Determination of the thermal expansion coefficient of boron carbide B13C2, High Temp., 2018, vol. 56, no. 5, pp. 668–672. https://doi.org/10.1134/S0018151X18050140

    Article  CAS  Google Scholar 

  26. Ponomarev, V.I., Kovalev, I.D., Konovalikhin, S.V., Chuev, I.I., Vershinnikov, V.I., and Kovalev, D.Yu., High temperature x-ray powder diffraction study of boron carbide crystals of different composition, J. Solid State Commun. (submitted).

  27. Konovalikhin, S.V. and Ponomarev, V.I., Is linear group X–Y–Z in boron carbide the weakest link in the structure?, Russ. J. Phys. Chem. A, 2015, vol. 89, no. 10, pp. 1850–1853. https://doi.org/10.1134/S0036024415100155

    Article  CAS  Google Scholar 

  28. Rasim, K., Ramlau, R., Leithe-Jasper, A., Mori, T., Burkhardt, U., Borrmann, H., Schnelle, W., Carbogno, C., Scheffler, M., and Grin, Yu., Local atomic arrangements and band structure of boron carbide, Angew. Chem. Int. Ed., 2018, vol. 57, pp. 6130–6135. https://doi.org/10.1002/anie.201800804

    Article  CAS  Google Scholar 

  29. Zhang, S., Lu, W., Wang, Ch., Shen, Q., and Zhang, L., Investigation of planar defects in pulsed electric current sintered B13C2 boron carbide ceramic, Ceram. Int., 2012, vol. 38, pp. 817–819. https://doi.org/10.1016/j.ceramint.2011.07.040

    Article  CAS  Google Scholar 

  30. Khomenko, N.Yu., Konovalikhin, S.V., Chuev, I.I., Guda, S.A., Silyakov, S.L., and Kovalev, D.Yu., X-Ray diffraction study of a new phase in the Ni–W–C system, Inorg. Mater., 2020, vol. 56, no. 6, pp. 572–576. https://doi.org/10.1134/S0020168520060072

    Article  CAS  Google Scholar 

  31. Schonenberg, M., The structure of the Co3W9C4 phase, Acta Metall., 1954, vol. 2, no. 6, pp. 837–839. https://doi.org/10.1016/0001-6160(54)90037-1

    Article  Google Scholar 

  32. Harsta, A., Johansson, T., Rundqvist, S., and Thomas, J.O., A neutron powder diffraction study of the kappa-phase in the Co–W–C system, Acta Chem. Scand., Ser. A, 1977, vol. 31, no. 4, pp. 260–264. https://doi.org/10.3891/acta.chem.scand.31a-0260

    Article  Google Scholar 

  33. Kripyakevich, P.I., Gladyshevskii, E.I., and Pylaeva, E.N., E.H., W6Fe2-type compounds in Ta–Ni and Nb–Ni systems, Kristallografiya, 1962, vol. 7, no. 2, pp. 212–216.

    CAS  Google Scholar 

  34. Yurko, G.A., Barton, J.W., and Parr, J.G., The crystal structure of Ti2Ni, Acta Crystallogr., 1959, vol. 12, no. 11, pp. 909–911. https://doi.org/10.1107/S0365110X59002559

    Article  CAS  Google Scholar 

  35. Boulineau, A., Joubert, J.M., and Cerny, R., Structural characterization of the Ta-rich part of the Ta–Al system, J. Solid State Chem., 2006, vol. 179, no. 11, pp. 3385–3393. https://doi.org/10.1016/jssc.2006.07.001

    Article  CAS  Google Scholar 

  36. Batsanov, S.S., Strukturnaya khimiya: Fakty i zavisimosti (Structural Chemistry: Book of Facts), Moscow: Dialog-MGU, 2000.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. V. Konovalikhin or D. Yu. Kovalev.

Additional information

Translated by Yu. Scheck

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konovalikhin, S.V., Chuev, I.I., Kovalev, D.Y. et al. Subtle Details in Crystal Structure of SHS Products by DFT Calculations. Int. J Self-Propag. High-Temp. Synth. 30, 15–21 (2021). https://doi.org/10.3103/S1061386221010052

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1061386221010052

Keywords:

Navigation