Skip to main content
Log in

The Study of Dark Currents in HgCdTe Heterostructure Photodiodes

  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

Dark current is the main factor that influences photodiode performance. It should be minimal to reduce noise and ensure a high level of photoelectric parameters. In order to identify the predominant causes of generation–recombination in photodiodes based on a mercury–cadmium–tellurium (MCT) ternary compound in the given voltage range, a calculation model is proposed for dark currents caused by fundamental and other current mechanisms. The components of dark current in photodiodes based on MCT heterostructures grown by molecular beam epitaxy (MBE) and liquid-phase epitaxy (LPE) methods are determined in the reverse bias voltages range from 0 to 40 mV. In the range from 0 to 20 mV, these characteristics are reduced to the diffusion component. When the reverse bias voltage exceeds 30 mV, an increase in the Shockley–Read–Hall (SRH) generation–recombination current and tunneling current through trap levels in the band gap is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. N. I. Yakovleva, Usp. Prikl. Fiz. 3 (2), 169 (2015).

    Google Scholar 

  2. N. I. Yakovleva, Prikl. Fiz., No. 5, 59 (2015).

  3. W. Shockley and W. T. Read, Phys. Rev. 8, 835 (1952).

    Article  Google Scholar 

  4. A. Unikovski and Y. Nemirovsky, Appl. Phys. Lett. 61, 330 (1992).

    Article  Google Scholar 

  5. K. O. Boltar’ and N. I. Yakovleva, Prikl. Fiz., No. 3, 82 (2004).

  6. N. I. Yakovleva, Usp. Prikl. Fiz. 6 (3), 231 (2018).

    Google Scholar 

  7. W. Van Roosbroeck and W. Shockley, Phys. Rev. 94, 1558 (1954).

    Article  Google Scholar 

  8. J. S. Blakemore, Semiconductor Statistics, International Series of Monographs on Semiconductors (Pergamon, New York, 1962), Vol. 3.

    Google Scholar 

  9. D. K. Blanks, J. D. Beck, M. A. Kinch, and L. Colombo, J. Vac. Sci. Technol. A 6, 2790 (1988).

    Article  Google Scholar 

  10. M. A. Kinch, “HgCdTe: Material of Choice for Tactical Systems. Tunneling Via Bandgap States” in Fundamentals of Infrared Detector Materials, (SPIE, Bellingham, Washington, 98227-0010, 2007).

  11. Y. Nemirovsky, D. Rosenfeld, R. Adar, and A. Kornfeld, J. Vac. Sci. Technol. A7, 528 (1989).

    Article  Google Scholar 

  12. M. B. Reine, A. K. Sood, and T. J. Tredwell, Semicond. Semimetals 18, Ch. 6 (1981).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Iakovleva.

Additional information

Translated by N. Semenova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iakovleva, N.I. The Study of Dark Currents in HgCdTe Heterostructure Photodiodes. J. Commun. Technol. Electron. 66, 368–374 (2021). https://doi.org/10.1134/S1064226921030220

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226921030220

Keywords:

Navigation