Skip to main content
Log in

The Probiotic Strain Lactobacillus fermentum 39: Biochemical Properties, Genomic Features, and Antiviral Activity

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Lactobacillus fermentum 39 is a well-known probiotic strain, which is widely used for production of pharmacopoeial probiotic preparations, dietary supplements, and foodstuffs enriched with probiotic microorganisms. In the course of analysis by transmission electron microscopy, the cell morphology was studied, biochemical properties of the strain and strain-specific characteristics of sugar metabolism were thoroughly analyzed, its full genome was sequenced, and the cluster of genes responsible for exopolysaccharide synthesis was characterized. The cells of Lactobacillus fermentum 39 were shown to be capable of adsorbing rotavirus particles, which allows us to substantiate a new aspect of application of probiotics, including this strain, in acute gastroenteritis caused by human rotaviruses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Ahmadi, E., Alizadeh-Navaei, R., and Rezai, M.S., Efficacy of probiotic use in acute rotavirus diarrhea in children: a systematic review and meta-analysis, Casp. J. Intern. Med., 2015, vol. 6, pp. 187–195.

    Google Scholar 

  2. Ang, L.Y., Too, H.K., Tan, E.L., Chow, T.K., Shek, L.P., Tham, E.H., and Alonso, S., Antiviral activity of Lactobacillus reuteri protectis against Coxsackievirus A and Enterovirus 71 infection in human skeletal muscle and colon cell lines, Virol. J., 2016, vol. 13, p. 111. https://doi.org/10.1186/s12985-016-0567-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Arena, M.P., Elmastour, F., Sane, F., Drider, D., Fiocco, D., Spano, G., and Hober, D., Inhibition of Coxsackievirus B4 by Lactobacillus plantarum, Microbiol. Res., 2018, vol. 210, pp. 59–64. https://doi.org/10.1016/j.micres.2018.03.008

    Article  CAS  PubMed  Google Scholar 

  4. Badel, S., Bernardi, T., and Michaud, P., New perspectives for lactobacilli exopolysaccharides, Biotechnol. Adv., 2011, vol. 29, pp. 54–66.

    Article  CAS  Google Scholar 

  5. Botić, T., Klingberg, T.D., Weingart, H., and Cencic, A., A novel eukaryotic cell culture model to study antiviral activity of potential probiotic bacteria, Int. J. Food Microbiol., 2007, vol. 115, pp. 227–234. https://doi.org/10.1016/j.ijfoodmicro.2006.10.044

    Article  CAS  PubMed  Google Scholar 

  6. Castro-Bravo, N., Wells, J.M., Margolles, A., and Ruas-Madiedo, P., Interactions of surface exopolysaccharides from Bifidobacterium and Lactobacillus within the intestinal environment, Front. Microbiol., 2018, vol. 9, p. 2426. https://doi.org/10.3389/fmicb.2018.02426

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cosentino, S., Voldby, L.M., Moller, A.F., and Lund, O., Pathogen-Finder—distinguishing friend from foe using bacterial whole genome sequence data, PLoS One, 2013, vol. 8, e77302. https://doi.org/10.1371/journal.pone.0077302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dan, T., Fukuda, K., Sugai-Bannai, M., Takakuwa, N., Motoshima, H., and Urashima, T., Characterization and expression analysis of the exopolysacharide gene cluster in Lactobacillus fermentum TDS030603, Biosci. Biotechnol. Biochem., 2009, vol. 73, pp. 2656–2664.

    Article  CAS  Google Scholar 

  9. Ermolenko, E.I., Suvorov, A.N., and Furaeva, V.A., In vitro antiviral effect of metabolites produced by the cultures of enterococcus and lactobacilli, Proc. 6 Russ. Congr. Infectol, 2003, p. 371.

  10. Estes, M.K. and Kapikian, A.Z., Rotaviruses, in Fields Virology, Fields, B.N., Knipe, D.M., and Howley, P.M., Eds., Philadelphia: Kluwer, 2007, pp. 1917–1973.

    Google Scholar 

  11. Gosteva, V.V., Interaction of bacteria, viruses, and eukaryotic cells under conditions of mixed infection (electron microscopic study), Cand. Sci (Biol.) Dissertation, Moscow, 1984.

  12. Grissa, I., Vergnaud, G., and Pourcel, C., CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats, Nucl. Acids Res., 2017, vol. 35, pp. 52–57.

    Article  Google Scholar 

  13. Hammes, W.P. and Hertel, C., The genus of Lactobacillus and Carnobacterium, in The Procaryotes, Balows, A., Truper, H.G., Dworkin, M., Harder, W., and Schleifer, K.-H., Eds., vol. 4, New York: Springer, 1992, 2nd ed.

    Google Scholar 

  14. Horvatha, Ph., Coûté-Monvoisina, A.C., Romerob, D.A., Boyavala, P., Fremauxa, Ch., and Barrangoub, R., Comparative analysis of CRISPR loci in lactic acid bacteria genomes, Int. J. Food Microbiol., 2009, vol. 131, pp. 62–70. https://doi.org/10.1016/j.ijfoodmicro.2008.05.030

    Article  CAS  Google Scholar 

  15. Isolauri, E., Probiotics for infectious diarrhea, Gut, 2003, vol. 52, pp. 436–437.

    Article  CAS  Google Scholar 

  16. Kang, H., Gilbert, C., Badeaux, F., Atlan, D., and LaPointe, G., A tyrosine phosphorylation switch controls the interaction between the transmembrane modulator protein Wzd and the tyrosine kinase Wze of Lactobacillus rhamnosus, BMC Microbiol., 2015, vol. 15, p. 40. https://doi.org/10.1186/s12866-015-0371-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Khusainov, I.A., Modern concepts on biosynthesis of bacterial exopolysaccharides, Vestn. Kazan. Tekhnol. Univ. 2014, vol. 17, no. 5, pp. 167–172.

    CAS  Google Scholar 

  18. Kim, K., Lee, G., Thanh, H.D., Kim, J.H., Konkit, M., Yoon, S., Park, M., Yang, S., Park, E., and Kim, W., Exopolysaccharide from Lactobacillus plantarum LRCC5310 offers protection against rotavirus-induced diarrhea and regulates inflammatory response, J. Dairy Sci., 2018, vol. 101, pp. 5702–5712. https://doi.org/10.3168/jds.2017-14151

    Article  CAS  PubMed  Google Scholar 

  19. Konyanee, A., Yotpanya, P., Panya, M., Engchanil, C., Suebwongsa, N., Namwat, W., Thaw, H., Faksri, K., Sankuntaw, N., and Lulitanond, V., Genome sequence of Lactobacillus fermentum 47-7, a good in vitro probiotic strain isolated from a healthy Thai infant, Microbiol. Res. Announc., 2019, vol. 8, e01014-19. https://doi.org/10.1128/MRA.01014-19

    Article  Google Scholar 

  20. Lactobacillus-containing probiotics, OFS.1.7.1.0006.15. https://pharmacopoeia.ru/ofs-1-7-1-0006-15-laktosoderzhashhie-probiotiki. Accessed April 25, 2019.

  21. Lei, S., Ramesh, A., Twitchell, E., Wen, K., Bui, T., Weiss, M., Yang, X., Kocher, J, Li, G., Giri-Rachman, E., Trang, N.V., Jiang, X., Ryan, E.P., and Yuan, L., High protective efficacy of probiotics and rice bran against human norovirus infection and diarrhea in gnotobiotic pigs, Front. Microbiol., 2016, p. 1699. https://doi.org/10.3389/fmicb.2016.01699

  22. Majamaa, H., Isolauri, E., Saxelin, M., and Vesikari, T., Lactic acid bacteria in the treatment of acute rotavirus gastroenteritis, J. Pediatr. Gastroenterol. Nutr., 1995, vol. 3, pp. 333–338.

    Article  Google Scholar 

  23. Makarova, K.S., Wolf, H., Alkhnbashi, O.S., Costa, F., Shah, S.A., Saunders, S.J., Barrangou, R., Brouns, S.J.J., Charpentier, E., Haft, D.H., Horvath, P., Moineau, S., Mojica, F.J.M., Terns, R.M., Terns, M.P., et al., An updated evolutionary classification of CRISPR-Cas systems, Nat. Rev. Microbiol., 2015, pp. 722–736. https://doi.org/10.1038/nrmicro3569

  24. Oleksy, M. and Klewicka, E., Exopolysaccharides produced by Lactobacillus sp.: biosynthesis and applications, Crit. Rev. Food Sci. Nutr., 2018, vol. 58, pp. 450–462. https://doi.org/10.1080/10408398.2016.1187112

    Article  CAS  PubMed  Google Scholar 

  25. Platonov, M.E., Evseeva, V.V., Dentovskaya, S.V., and Anisimov, A.P., Molecular typing of Yersinia pestis, Mol. Genet. Microbiol. Virol., 2013, vol. 28, pp. 41–51.

    Article  Google Scholar 

  26. Ravin, N.V. and Shestakov, S.V., The genome of prokaryotes, Russ. J. Gen.: Appl. Res., 2013, vol. 17, pp. 972–984.

    Google Scholar 

  27. Salminen, S., Bouley, C., Boutron-Ruault, M.C., Cummings, J.H., Franck, A., Gibson, G.R., Isolauri, E., Moreau, M.C., Roberfroid, M., and Rowland, I., Functional food science and gastrointestinal physiology and function, Br. J. Nutr., 1998, vol. 80, pp. S147–S171.

    Article  CAS  Google Scholar 

  28. Seemann, T., Prokka: rapid prokaryotic genome annotation, Bioinformatics, 2014, vol. 30, pp. 2068–2069. https://doi.org/10.1093/bioinformatics/btu153

    Article  CAS  PubMed  Google Scholar 

  29. Shelkovaya, N.G., Kupchinskii, L.G., Znamenskii, V.A., and Bondarenko, V.M., Electron microscopic investigation of the interaction of bacterial intestinal microflora and rotavirus virions, Zh. Mikrobiol. Epidemiol. Immunobiol., 1991, no. 9, pp. 18–21.

  30. Sunmola, A.A., Ogbole, O.O., Faleye, T.O.C., Adetoye, A., Adeniji, J.A., and Ayeni, F.A., Antiviral potentials of Lactobacillus plantarum, Lactobacillus amylovorus, and Enterococcus hirae against selected Enterovirus, Folia Microbiol., 2019, vol. 64, pp. 257–264. https://doi.org/10.1007/s12223-018-0648-6

    Article  CAS  Google Scholar 

  31. The Firmicutes, in Bergey’s Manual of Systematic Bacteriology, Vos, P., Garrity, G., Jones D., Krieg, N.R., Ludwig, W., Rainey, F.A., Schleifer, K.-H., and Whitman, W.B., Eds., New York: Springer, 2009, vol. 3, 2nd ed.

    Google Scholar 

  32. Virology. A Practical Approach, Mahy, B.W., Ed., Oxford: IRL, 1985.

    Google Scholar 

  33. Zankari, E., Hasman, H., Cosentino, S., Vestergaard, M., Rasmussen, S., Lund, O., Aarestrup, F.M., and Larsen, M.V., Identification of acquired antimicrobial resistance genes, J. Antimicrob. Chemother., 2012, vol. 67, pp. 2640–2644. https://doi.org/10.1093/jac/dks261                                                             

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Tochilina.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by E. Makeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soloveva, I.V., Novikova, N.A., Tochilina, A.G. et al. The Probiotic Strain Lactobacillus fermentum 39: Biochemical Properties, Genomic Features, and Antiviral Activity. Microbiology 90, 219–225 (2021). https://doi.org/10.1134/S0026261721020132

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261721020132

Keywords:

Navigation