Skip to main content
Log in

Comparative Study of Methanogenic Pathways in the Sediments of Thermokarst and Polygenetic Yamal Lakes

  • SHORT COMMUNICATIONS
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Comparative study of methanogen diversity and potential activity of different methanogenic pathways in the sediments of young thermokarst and mature polygenetic Yamal lakes was carried out. The hydrogenotrophic pathway of methanogenesis played an important role in methane formation in thermokarst lakes. The acetoclastic and methylotrophic pathways were also revealed there. In a polygenetic lake with a dissolved organic matter content closest to that of the thermokarst lakes, methanogenesis proceeded more intensively, and the relative abundance of methanogens, especially acetoclastic ones, was higher than in thermokarst lakes. The activity of methyl-reducing methanogens was also assumed there. Methanogens of the genera Methanothrix and Methanoregula, as well as representatives of the family Methanomassiliicoccaceae were identified in the sediments of all lakes. Methane-oxidizing bacteria (Methylobacter, Candidatus “Methylomirabilis”) and archaea (Ca. “Methanoperedens”) were also detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., DeFries, R., Galloway, J., Heimann, M., Jones, C., Le Quéré, C., Myneni, R.B., Piao, S., and Thornton, P., Carbon and other biogeochemical cycles, Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P.M., Eds., Cambridge: Cambridge Univ. Press, UK, 2013, pp. 465–570.

    Google Scholar 

  2. Crevecoeur, S., Vincent, W.F., Comte, J., Matveev, A., and Lovejoy, C., Diversity and potential activity of methanotrophs in high methane-emitting permafrost thaw ponds, PLoS One, 2017, vol. 12, e0188223.

    Article  Google Scholar 

  3. de Jong, A.E.E., in’t Zandt, M.H., Meisel, O.H., Jetten, M.S.M., Dean, J.F., Rasigraf, O., and Welte, C.U., Increases in temperature and nutrient availability positively affect methane-cycling microorganisms in Arctic thermokarst lake sediments, Environ. Microbiol., 2018, vol. 20, pp. 4314–4327.

    Article  CAS  Google Scholar 

  4. Dridi, B., Fardeau, M.-L., Ollivier, B., Raoult, D., and Drancourt, M., Methanomassiliicoccus luminyensis gen. nov., sp. nov., a methanogenic archaeon isolated from human faeces, Int. J. Syst. Evol. Microbiol., 2012, vol. 62, pp. 1902–1907.

    Article  CAS  Google Scholar 

  5. He, R., Wooller, M.J., Pohlman, J.W., Quensen, J., Tiedje, J.M., and Leigh, M.B., Shifts in identity and activity of methanotrophs in arctic lake sediments in response to temperature changes, Appl. Environ. Microbiol., 2012, vol. 78, pp. 4715–4723.

    Article  CAS  Google Scholar 

  6. Heslop, J.K., Walter Anthony, K.M., Sepulveda-Jaure-gui, A., Martinez-Cruz, K., Bondurant, A., Grosse, G., and Jones, M.C., Thermokarst lake methanogenesis along a complete talik profile, Biogeosci., 2015, vol. 12, pp. 4317–4331.

    Article  Google Scholar 

  7. in’t Zandt, M.H., Frank, J., Yilmaz, P., Cremers, G., Jetten, M.S.M., and Welte, C.U., Long-term enriched methanogenic communities from thermokarst lake sediments show species-specific responses to warming, FEMS Microbes, 2020, xtaa008. https://doi.org/10.1093/femsmc/xtaa008

  8. Kallistova, A., Merkel, A., Kanapatskiy, T., Boltyanskaya, Yu., Tarnovetskii, I., Perevalova, A., Kevbrin, V., Samylina, O., and Pimenov, N., Methanogenesis in the Lake Elton saline aquatic system, Extremophiles, 2020, vol. 24, pp. 657–672.

    Article  CAS  Google Scholar 

  9. Kravtsova, V.I., Occurrence of thermokarst lakes in Russia, Vestn. Mos. Univ. Ser. Georg., 2009, no. 3, pp. 33–42.

  10. Martinez-Cruz, K., Leewis, M.C., Herriott, I.C., Sepulveda-Jauregui, A., Anthony, K.W., Thalasso, F., and Leigh, M.B., Anaerobic oxidation of methane by aerobic methanotrophs in sub-Arctic lake sediments, Sci. Total Environ., 2017, vol. 607–608, pp. 23–31.

    Article  Google Scholar 

  11. Martinez-Cruz, K., Sepulveda-Jauregui, A., Anthony, K.W., and Thalasso, F. Geographic and seasonal variation of dissolved methane and aerobic methane oxidation in Alaskan lakes, I.,2015, vol. 12, pp. 4595–4606.

  12. Matheus Carnevali, P.B., Herbold, C.W., Hand, K.P., Priscu, J.C., and Murray, A.E., Distinct microbial assemblage structure and archaeal diversity in sediments of Arctic thermokarst lakes differing in methane sources, Front. Microbiol., 2018, vol. 9, art. 1192. https://doi.org/10.3389/fmicb.2018.01192

    Article  PubMed  PubMed Central  Google Scholar 

  13. Matheus Carnevali, P.B., Rohrssen, M., Williams, M.R., Michaud, A.B., Adams, H., Berisford, D., Love, G.D., Priscu, J.C., Rassuchine, O., Hand, K.P., and Murray, A.E., Methane sources in arctic thermokarst lake sediments on the North Slope of Alaska, Geobiology, 2015, vol. 13, pp. 181–197.

    Article  CAS  Google Scholar 

  14. McAuliffe, C.C., GC determination of solutes by multiple phase equilibration, Chem. Technol., 1971, vol. 1, pp. 46–51.

    Google Scholar 

  15. Negandhi, K., Laurion, I., and Lovejoy, C., Bacterial communities and greenhouse gas emissions of shallow ponds in the High Arctic, Polar Biol., 2014, vol. 37, pp. 1669–1683.

    Article  Google Scholar 

  16. Obshchee merzlotovedenie (General Prmafrost Science), Kudryavtsev, V.A., Ed., Moscow: Mos. Gos. Univ., 1978.

    Google Scholar 

  17. Oliva, M. and Fritz M., Permafrost degradation on a warmer Earth: challenges and perspectives, Curr. Opin. Environ. Sci. Health, 2018, vol. 5, pp. 14–18.

    Article  Google Scholar 

  18. Pokrovskii, O.S., Shirokova, L.S., and Kirpotin, S.N., Microbiological factors controlling the carbon cycle in thermokarst water bodies of Western Siberia, Vestn. Tomsk. Gos. Univ. Biol., 2012, no. 3(19), pp. 199–217.

  19. Rissanen, A.J., Saarenheimo, J., Tiirola, M., Peura, S., Aalto, S.L., Karvinen, A., and Nykänen, H., Gammaproteobacterial methanotrophs dominate methanotrophy in aerobic and anaerobic layers of boreal lake waters, Aquat. Microb. Ecol., 2018, vol. 81, pp. 257–276.

    Article  Google Scholar 

  20. Saunois, M., Bousquet, P., Poulter, B., Peregon, A., Ciais, P., Canadell, J.G., Dlugokencky, E.J., Etiope, G., Bastviken, D., Houweling, S., Janssens-Maenhout, G., Tubiello, F.N., Castaldi, S., Jackson, R.B., Alexe, M., et al., The global methane budget 2000–2012, Earth. Syst. Sci. Data, 2016, vol. 8, pp. 697–751.

    Article  Google Scholar 

  21. Savvichev, A., Rusanov, I., Dvornikov, Y., Kadnikov, V., Kallistova, A., Veslopolova, E., Chetverova, A., Leibman, M., Sigalevich, P., Pimenov, N., Ravin, N., and Khomutov, A., The water column of the Yamal tundra lakes as a microbial filter preventing methane emission, Biogeosci. Discuss., 2020, in press.https://doi.org/10.5194/bg-2020-317

  22. Serikova, S., Pokrovsky, O.S., Laudon, H., Krickov, I.V., Lim, A.G., Manasypov, R.M., and Karlsson, J., High carbon emissions from thermokarst lakes of Western Siberia, Nat. Commun., 2019, vol. 10, 1552. https://doi.org/10.1038/s41467-019-09592-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Townsend-Small, A., Åkerström, F., Arp, C.D., and Hinkel, K.M., Spatial and temporal variation in methane concentrations, fluxes, and sources in lakes in Arctic Alaska, J. Geophys. Res: Biogeosci., 2017, vol. 122, pp. 2966–2981.

    Article  CAS  Google Scholar 

  24. Vonk, J.E., Tank, S.E., Bowden, W.B., Laurion, I., Vincent, W.F., Alekseychik, P., Amyot, M., Billet, M.F., Canário, J., Cory, R.M., Deshpande, B.N., Helbig, M., Jammet, M., Karlsson, J., Larouche, J., et al., Reviews and syntheses: effects of permafrost thaw on Arctic aquatic ecosystems, Biogeosci., 2015, vol. 12, pp. 7129–7167.

    Article  CAS  Google Scholar 

  25. Walter, K.M., Smith, L.C., and Chapin, F.S., Methane bubbling from northern lakes: present and future contributions to the global methane budget, Philos. Trans. A Math. Phys. Eng. Sci., 2007, vol. 365, pp. 1657–1676.

    CAS  Google Scholar 

  26. Wik, M., Varner, R.K., Anthony, K.W., MacIntyre, S., and Bastviken, D., Climate-sensitive northern lakes and ponds are critical components of methane release, Nat. Geosci., 2016, vol. 9, pp. 99–105.

    Article  CAS  Google Scholar 

  27. Yu, Y., Lee, C., Kim, J., and Hwang, S., Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerasechain reaction, Biotechnol. Bioeng., 2005, vol. 89, pp. 670–679.

    Article  CAS  Google Scholar 

  28. Zabelina, S.A., Shirokova, L.S., Klimov, S.I., Chupakov, A.V., Lim, A.G., Polishchuk, Y.M., Polishchuk, V.Y., Bogdanov, A.N., Muratov, I.N., Guerin, F., Karlsson, J., and Pokrovsky, O.S., Carbon emission from thermokarst lakes in NE European tundra, Limnol. Oc-eanogr., 2020. https://doi.org/10.1002/lno.11560

Download references

Funding

The work was supported by the Russian Science Foundation, project no. 16-14-10201. The work of I.I. Rusanov was supported by the RF Ministry of Science and Higher Education (State Assignment of the Biotechnology Center, Russian Academy of Sciences). The Yamal expedition was supported by the Russian Center for Arctic Exploration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Kallistova.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by P. Sigalevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kallistova, A.Y., Kadnikov, V.V., Savvichev, A.S. et al. Comparative Study of Methanogenic Pathways in the Sediments of Thermokarst and Polygenetic Yamal Lakes. Microbiology 90, 261–267 (2021). https://doi.org/10.1134/S0026261721020065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261721020065

Keywords:

Navigation