Skip to main content
Log in

Survival of escherichia coli in Water Microcosm Study and Rethinking its Use as Indicator

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

We investigated the fate of Escherichia coli in natural waters, addressing survival, viable but non-culturable (VBNC) state, changes in phenotype and genomic diversification under laboratory microcosm environment. Five E. coli isolates (three marine, one clinical and one laboratory strain) were inoculated in microcosms of sterile distilled water, as well as, water collected from river, pond, sea, and estuary. A viable count was measured every week for up to 33 weeks. Strains which undergone VBNC state in microcosms were resuscitated. The revived isolates were tested to determine changes in antibiotic susceptibility, thermotolerance and genetic fingerprinting. We found extended persistence of five E. coli strains in water microcosms at room temperature for durations ranging from four to 33 weeks. Even in distilled water, some isolates persisted up to seven weeks; proving E. coli have excellent tenacity to survive. At VBNC state in microcosms, bacteria were small coccoid in shape and formed biofilms in most cases. Resuscitated laboratory strains showed changes in antibiotic susceptibility and thermotolerance compared to the original counterpart. However, the revived marine isolates showed very little to no difference in those tests. Resuscitation media could not revived the pathogenic isolates. The REP- and BOX-PCR genomic fingerprinting also showed some genetic diversification among resuscitated strains during the extended survival and VBNC state. The overall observation supports for the E. coli to survive in natural waters and to enter into VBNC state. It ultimately proves that their presence in water does not necessarily indicate faecal contamination but still beyond acceptance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Ahmed, W., Neller, R., and Katouli, M., Host species-specific metabolic fingerprint database for enterococci and Escherichia coli and its application to identify sources of fecal contamination in surface waters, Appl. Environ. Microbiol., 2005, vol. 71, pp. 4461–4468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Akter, S., Islam, M., Afreen, K.S., Azmuda, N., Khan, S.I., and Birkeland, N.K., Prevalence and distribution of different diarrhoeagenic Escherichia coli virulotypes in major water bodies in Bangladesh, Epidemiol. Infect., 2013, vol. 141, pp. 2516–2525.

    Article  CAS  PubMed  Google Scholar 

  3. Arana, I., Orruno, M., Perez-Pascual, D., Seco, C., Muela, A., and Barcina, I., Inability of Escherichia coli to resuscitate from the viable but nonculturable state, FEMS Microbiol. Ecol., 2007, vol. 62, pp. 1–11.

    Article  CAS  PubMed  Google Scholar 

  4. Bauer, A.W., Kirby, W.M., Sherris, J. C., and Turck, M., Antibiotic susceptibility testing by a standardized single disk method, Am. J. Clin. Pathol., 1966, vol. 45, pp. 493–496.

    Article  CAS  PubMed  Google Scholar 

  5. Byappanahalli, M.N. and Fujioka, R.S., Evidence that tropical soil environment can support the growth of Escherichia coli, Water Sci. Technol., 1998, vol. 38, pp. 171–174.

    Article  CAS  Google Scholar 

  6. Byappanahalli, M.N., Whitman, R.L., Shively, D.A., Sadowsky, M.J., and Ishii, S., Population structure, persistence, and seasonality of autochthonous Escherichia coli in temperate, coastal forest soil from a Great Lakes watershed, Environ. Microbiol., 2006, vol. 8, pp. 504–513.

    Article  CAS  PubMed  Google Scholar 

  7. Cabral, J.P., Water microbiology. Bacterial pathogens and water, Int. J. Environ. Res. Public Health, 2010, vol. 7, pp. 3657–3703.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ding, T., Suo, Y., Xiang, Q., Zhao, X., Chen, S., Ye, X., and Liu, D., Significance of viable but nonculturable Escherichia coli: induction, detection, and control, J. Microbiol. Biotechnol., 2017, vol. 27, pp. 417–428.

    Article  CAS  PubMed  Google Scholar 

  9. Doran, J.W. and Linn, D.M., Bacteriological quality of runoff water from pastureland, Appl. Environ. Microbiol., 1979, vol. 37, pp. 985–991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Edwards, P.R. and Ewing, W.H., Edwards and Ewing’s Identification of Enterobacteriaceae, New York: Elsevier, 1986, 4th ed.

    Google Scholar 

  11. El-Leithy, M.A., El-Shatoury, E.H., Abou-Zeid, M.A., Hemdan, B.A., Samhan, F.A., and El-Taweel, G.E., Survival of enterotoxigenic E. coli O157:H7 strains in different water sources, Int. J. Environ., 2014, vol. 3, pp. 212–220.

    Google Scholar 

  12. Ercumen, A., Pickering, A.J., Kwong, L.H. Arnold, B.F., Parvez, S.M., Alam, M., Sen, D., Islam, S., Kullmann, C., Chase, C., Ahmed, R., Unicomb, L., Luby, S.P., and Colford, J.M., Animal feces contribute to domestic fecal contamination: evidence from E. coli measured in water, hands, food, flies, and soil in Bangladesh, Environ. Sci. Technol., 2017, vol. 51, pp. 8725–8734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Flint, K.P., The long-term survival of Escherichia coli in river water, J. Appl. Bacteriol., 1987, vol. 63, pp. 261–270.

    Article  CAS  PubMed  Google Scholar 

  14. Herigstad, B., Hamilton, M., and Heersink, J., How to optimize the drop plate method for enumerating bacteria, J. Microbiol. Methods, 2001, vol. 44, pp. 121–129.

    Article  CAS  PubMed  Google Scholar 

  15. Ishii, S., Ksoll, W.B., Hicks, R.E., and Sadowsky, M.J., Presence and growth of naturalized Escherichia coli in temperate soils from Lake Superior watersheds, Appl. Environ. Microbiol., 2006, vol. 72, pp. 612–621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ishii, S. and Sadowsky, M.J., Escherichia coli in the environment: implications for water quality and human health, Microbes Environ., 2008, vol. 23, pp. 101–108.

    Article  PubMed  Google Scholar 

  17. Kolling, G., Wu, M., and Guerrant, R.L., Enteric pathogens through life stages, Front. Cell. Infect. Microbiol., 2012, vol. 2, p. 114.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Liu, D., Escherichia coli, Encyclopedia of Microbiology, 4th ed., Schmidt, T.M., Ed., Academic, 2014, pp. 171–182.

    Google Scholar 

  19. Luby, S.P., Halder, A.K., Huda, T.M., Unicomb, L., Islam, M.S., Arnold, B.F., and Johnston, R.B., Microbiological contamination of drinking water associated with subsequent child diarrhea, Am. J. Trop. Med. Hyg., 2015, vol. 93, pp. 904–911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Macfarlane, G.T. and Macfarlane, S., Human colonic microbiota: ecology, physiology and metabolic potential of intestinal bacteria, Scand. J. Gastroenterol. Suppl., 1997, vol. 222, pp. 3–9.

    Article  CAS  PubMed  Google Scholar 

  21. Marion, J.W., Lee, J., Lemeshow, S., and Buckley, T.J., Association of gastrointestinal illness and recreational water exposure at an inland U.S. beach, Water Res., 2010, vol. 44, pp. 4796–4804.

    Article  CAS  PubMed  Google Scholar 

  22. McLarnan, S.M., Escherichia coli as a water quality indicator organism: a case for responsive, science-based policy, All College Thesis Program, 2016−2019. https://digitalcommons.csbsju.edu/honors_thesis/38.

  23. Medema, G.J., Payment, P., Dufour, A., Robertson, W., Waite, M., Hunter, P., Kirby, R., and Anderson, Y., Safe drinking water and ongoing challenge, in Assessing Microbial Safety of Drinking Water: Improving Approaches and Methods, Dufour, A., Snozzi, M., Koster, W., Bartram, J., and Ronchi, E., Eds., London: WHO & OECD, IWA, 2003, pp. 11–45.

    Google Scholar 

  24. Nautiyal, C.S., Self-purificatory Ganga water facilitates death of pathogenic Escherichia coli O157:H7, Curr. Microbiol., 2009, vol. 58, pp. 25–29.

    Article  CAS  PubMed  Google Scholar 

  25. Nguyen, M.T., Jasper, J.T., Boehm, A.B., and Nelson, K.L., Sunlight inactivation of fecal indicator bacteria in open-water unit process treatment wetlands: modeling endogenous and exogenous inactivation rates, Water. Res., 2015, vol. 83, pp. 282–292.

    Article  CAS  PubMed  Google Scholar 

  26. Naoko, W., Junichiro, N., Jalaluddin, S., James, P.N., Jav, S., Mayumi, I., Kunihiro, M., Koichi, T., Masao, Y., and Yoshifumi, K., Quantitative biofilm assay using a microtiter plate to screen for enteroaggregative Escherichia coli, Am. J. Trop. Med. Hyg., 2004, vol. 71, no. 5, pp. 687–690.

    Article  Google Scholar 

  27. Oliver, J.D., The viable but nonculturable state in bacteria, J. Microbiol., 2005, vol. 43, pp. 93–100.

    PubMed  Google Scholar 

  28. Oram, B., Fecal Coliform Bacteria in Water, Water Res. Center, 2014.

    Google Scholar 

  29. Pavel, A.B. and Vasile, C.I., PyElph—a software tool for gel images analysis and phylogenetics, BMC Bioinform., 2012, vol. 13, p. 9.

    Article  Google Scholar 

  30. Pienaar, J.A., Singh, A., and Barnard, T.G., The viable but non-culturable state in pathogenic Escherichia coli: a general review, Afr. J. Lab. Med., 2016, vol. 5, p. 368.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Pinto, D., Almeida, V., Almeida Santos, M., and Chambel, L., Resuscitation of Escherichia coli VBNC cells depends on a variety of environmental or chemical stimuli, J. Appl. Microbiol., 2011, vol. 110, pp. 1601–1611.

    Article  CAS  PubMed  Google Scholar 

  32. Pinto, D., Santos, M.A., and Chambel, L., Thirty years of viable but nonculturable state research: unsolved molecular mechanisms, Crit. Rev. Microbiol., 2015, vol. 41, pp. 61–76.

    Article  PubMed  Google Scholar 

  33. Rademaker, J.L.W. and Bruijn, F.J.D., Characterization and classification of microbes by rep-PCR genomic fingerprinting and computer assisted pattern analysis, DNA Markers: Protocols, Applications and Overviews, Caetano-Anollés G. and Gresshoff P.M., Eds., New York: Wiley, 1998, ch. 10, pp. 151–171.

  34. Rao, L., Wang, Y., Chen, F., and Liao, X., The synergistic effect of high pressure CO2 and nisin on inactivation of Bacillus subtilis spores in aqueous solutions, Front. Microbiol., 2016, vol. 7, p. 1507.

    PubMed  PubMed Central  Google Scholar 

  35. Robins-Browne, R.M., Holt, K.E., Ingle, D.J., Hocking, D.M., Yang, J., and Tauschek, M., Are Escherichia coli pathotypes still relevant in the era of whole-genome sequencing?, Front. Cell. Infect. Microbiol., 2016, vol. 6, p. 141.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Sata, S., Fujisawa, T., Osawa, R., Iguchi, A., Yamai, S., and Shimada, T., An improved enrichment broth for isolation of Escherichia coli O157, with specific reference to starved cells, from radish sprouts, Appl. Environ. Microbiol., 2003, vol. 69, pp. 1858–1860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Savageau, M.A., Escherichia coli habitats, cell types, and molecular mechanisms of gene control, Am. Nat., 1983, vol. 122, pp. 732–744.

    Article  CAS  Google Scholar 

  38. Sousa, C.P., The versatile strategies of Escherichia coli pathotypes: a mini review, J. Venom. Anim. Toxins Incl. Trop. Dis., 2006, vol. 12, pp. 363–373.

    Article  CAS  Google Scholar 

  39. Swaroop, S., The range of variation of the most probable number of organisms estimated by the dilution method, Indian J. Med. Res., 1951, vol. 39, p. 107.

    CAS  PubMed  Google Scholar 

  40. Walker, T.J., Bachoon, D.S., Otero, E., and Ramsubhag, A., Detection of verotoxin producing Escherichia coli in marine environments of the Caribbean, Mar. Pollut. Bull., 2013, vol. 76, pp. 406–410.

    Article  CAS  PubMed  Google Scholar 

  41. Wellington, E.M., Boxall, A.B., Cross, P. Feil, E.J., Gaze, W.H., Hawkey, P.M., Johnson-Rollings, A.S., Jones, D.L., Lee, N.M., and Otten, W., The role of the natural environment in the emergence of antibiotic resistance in gram-negative bacteria, Lancet Infect. Dis., 2013, vol. 13, pp. 155–165.

    Article  CAS  PubMed  Google Scholar 

  42. WHO, International Standards for Drinking-Water [Electronic Resource]: Annex II, Table 1, Geneva: World Health Organization, 1958. WHO, Multiple-tube method for thermotolerant (faecal) coliforms, Guidelines for Drinking Water Quality: Surveillance and Control of Community Supplies (book 3), Geneva: World Health Organization, 1998.

  43. WHO, Guidelines for Drinking-water Quality [Electronic Resource]: Incorporating 1st and 2nd Addenda, Geneva: World Health Organization, 2008. WHO, Drinking-Water, Geneva: World Health Organisation, 2018.

  44. WHO, Enterohaemorrhagic Escherischia coli, Geneva: World Health Organisation, 2019.

    Google Scholar 

  45. Winfield, M.D. and Groisman, E.A., Role of nonhost environments in the lifestyles of Salmonella and Escherichia coli, Appl. Environ. Microbiol., 2003, vol. 69, pp. 3687–3694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhao, X., Zhong, J., Wei, C., Lin, C.W., and Ding, T., Current perspectives on viable but non-culturable state in foodborne pathogens, Front. Microbiol., 2017, vol. 8, p. 580.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are indebted to Nowshin Nusrat, Dipon Kundu and S.M. Shajidur Rahman for essential help in field and laboratory work.

Funding

This study was funded by the Higher Education Quality Enhancement Project (HEQEP), Academic Innovation Fund (AIF) 3rd round sub-project (CP 3400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Akter.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saima, U., Alam, M. & Akter, S. Survival of escherichia coli in Water Microcosm Study and Rethinking its Use as Indicator. Microbiology 90, 247–260 (2021). https://doi.org/10.1134/S0026261721020107

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261721020107

Keywords:

Navigation