Skip to main content
Log in

Antibiotic-Resistant Microorganisms and Multiple Drug Resistance Determinants in Pseudomonas Bacteria from the Pushchino Wastewater Treatment Facilities

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

The work presents characterization of antibiotic-resistant strains isolated by direct plating of five samples collected at different treatment stages from the Pushchino water treatment facilities in April 2015. Primary analysis of resistance of the collection (~800 strains) to the following antibiotics was carried out: carbenicillin, kanamycin, streptomycin, amikacin, tobramycin, chloramphenicol, rifampicin, gentamicin, tetracycline, ceftazidime, cefepime, and meropenem. Antibiotic-resistant bacteria most common in the Pushchino wastewater treatment facilities were found to belong to the genera Pseudomonas and Alcaligenes. Occurrence of tetracycline resistance genes was investigated, and predominance of the tetA/tetC genes responsible for active transport of this antibiotic from the cell were found to be predominant among the studied strains. The strains containing the genes associated with type I integrons (intI1, qacE/qacEΔ1, and sul1) constituted 25% of the studied ones. Four Pseudomonas strains were found to contain the IncN plasmids, while seven strains of this genus contained plasmids of the P-9 incompatibility group (ε-subgroup). Three IncP-9 plasmids were conjugative and carried simultaneously the determinants of tetracycline, streptomycin, and gentamicin resistance, which has not been previously reported for the ε-subgroup of IncP-9 plasmids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Ashbolt, N.J., Amézquita, A., Backhaus, T., Borriello, P., Brandt, K.K., Collignon, P., Coors, A., Finley, R., Gaze, W.H., Heberer, T., Lawrence, J.R., Larsson, D.G., McEwen, S.A., Ryan, J.J., Schönfeld, J., et al., Human Health Risk Assessment (HHRA) for environmental development and transfer of antibiotic resistance, Environ. Health Perspect., 2013, vol. 121, pp. 993‒1001.

    Article  Google Scholar 

  2. Boronin, A.M., Diversity of Pseudomonas plasmids: to what extent?, FEMS Microbiol Lett., 1992, vol. 79, pp. 461‒467.

    Article  Google Scholar 

  3. Carattoli, A., Plasmids and the spread of resistance, Int. J. Med. Microbiol., 2013, vol. 303, pp. 298–304.

    Article  CAS  Google Scholar 

  4. Chaturvedi, P., Giri, B.S., Shukla, P., and Gupta, P., Recent advancement in remediation of synthetic organic antibiotics from environmental matrices: Challenges and Perspective, Bioresour. Technol., 2021, vol. 319, art. 124161.

    Article  CAS  Google Scholar 

  5. Dalkmann, P., Broszat, M., Siebe, C., Willaschek, E., Sakinc, T., Huebner, J., Amelung, W., Grohmann, E., and Siemens, J., Accumulation of pharmaceuticals, Enterococcus, and resistance genes in soils irrigated with wastewater for zero to 100 years in central Mexico, PLoS One, 2012, vol. 7, art. e45397.

    Article  CAS  Google Scholar 

  6. De Bruyne, K., Slabbinck, B., Waegeman, W., Vauterin, P., De Baets, B., and Vandamme, P., Bacterial species identification from MALDI-TOF mass spectra through data analysis and machine learning, Syst. Appl. Microbiol., 2011, vol. 34, pp. 20‒29.

    Article  CAS  Google Scholar 

  7. Gillings, M.R., Gaze, W.H., Pruden, A., Smalla, K., Tiedje, J.M., and Zhu, Y.G., Using the class 1 integron-integrase gene as a proxy for anthropogenic pollution, ISME J., 2015, vol. 9, pp. 1269‒1279.

    Article  CAS  Google Scholar 

  8. Götz, A., Pukall, R., Smit, E., Tietze, E., Prager, R., Tschäpe, H., van Elsas, J.D., and Smalla, K., Detection and characterization of broad-host-range plasmids in environmental bacteria by PCR, Appl. Environ. Microbiol., 1996, vol. 62, pp. 2621‒2628.

    Article  Google Scholar 

  9. Greated, A. and Thomas, C.M., A pair of PCR primers for IncP-9 plasmids, Microbiology (Reading), 1999, vol. 145, pp. 3003‒3004. https://doi.org/10.1099/00221287-145-11-3003A

    Article  Google Scholar 

  10. Hong, J.S., Yoon, E.-J., Song, W., Seo, Y.B., Shin, S., Park, M.-J., Jeong, S.H., and Lee, K., Molecular characterization of Pseudomonas putida group isolates carrying bla VIM-2 disseminated in a university hospital in Korea, Microb. Drug Resist., 2018, vol. 24, pp. 627‒634.

    Article  CAS  Google Scholar 

  11. Izmalkova, T.Yu., Sazonova, O.I., Sokolov, S.L., Kosheleva, I.A., and Boronin, A.M., The P-7 incompatibility group plasmids responsible for biodegradation of naphthalene and salicylate in fluorescent pseudomonads, Microbiology (Moscow), 2005, vol. 74, pp. 290‒295.

    Article  CAS  Google Scholar 

  12. Kraft, C.A., Timbury, M.C., and Platt, D.J., Distribution and genetic location of Tn7 in trimethoprim-resistant Escherichia coli, J. Med. Microbiol., 1986, vol. 22, pp. 125–131.

    Article  CAS  Google Scholar 

  13. Kerrn, M.B., Klemmensen, T., Frimodt-Möller, N., and Espersen, F., Susceptibility of Danish Escherichia coli strains isolated from urinary tract infections and bacteraemia, and distribution of sul genes conferring sulphonamide resistance, J. Antimicrob. Chemother., 2002, vol. 50, pp. 513–516.

    Article  CAS  Google Scholar 

  14. Larsson, D.G.J., de Pedro, C., and Paxeus, N., Effluent from drug manufactures contains extremely high levels of pharmaceuticals, J. Hazard. Mater., 2007, vol. 148, pp. 751–755.

    Article  CAS  Google Scholar 

  15. Li, J., Zhang, H., Chen, Y., Luo, Y., and Zhang, H., Sources identification of antibiotic pollution combining land use information and multivariate statistics, Environ. Monit. Assess., 2016, vol. 188, p. 430.

    Article  Google Scholar 

  16. Nguyen, F., Starosta, A.L., Arenz, S., Sohmen, D., Dönhöfer, A., and Wilson, D.N., Tetracycline antibiotics and resistance mechanisms, Biol. Chem., 2014, vol. 395, pp. 559–575.

    Article  CAS  Google Scholar 

  17. Partridge, S.R., Kwong, S.M., Firth, N., and Jensen, S.O., Mobile genetic elements associated with antimicrobial resistance, Clin. Microbiol. Rev., 2018, vol. 31, pp. 1‒61.

    Article  Google Scholar 

  18. Puckowsk, A., Mioduszewska, K., Łukaszewicz, P., Borecka, M., Caban, M., Maszkowska, J., and Stepnowsk, P., Bioaccumulation and analytics of pharmaceutical residues in the environment: a review, J. Pharm. Biomed. Anal., 2016, vol. 127, pp. 232–255.

    Article  Google Scholar 

  19. Roberts, M.C., Mechanism of resistance for characterized tet and otr genes, http://faculty.washington.edu/marilynr/tetweb1.pdf (modified: Feb 2020).

  20. Rowe-Magnus, D.A. and Mazel, D., The role of integrons in antibiotic resistance gene capture, Int. J. Med. Microbiol., 2002, vol. 292, pp. 115‒125.

    Article  CAS  Google Scholar 

  21. Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular cloning: A Laboratory Manual, Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press, 1989, 2nd ed.

    Google Scholar 

  22. Sandvang, D., Aarestrup, F.M., and Jensen, L.B., Characterisation of integrons and antibiotic resistance genes in Danish multiresistant Salmonella enterica Typhimurium DT104, FEMS Microbiol. Lett., 1998, vol. 160, pp. 37‒41.

    Article  CAS  Google Scholar 

  23. Schlüter, A., Szczepanowski, R., Pühler, A., and Top, E.M., Genomics of IncP-1 antibiotic resistance plasmids isolated from wastewater treatment plants provides evidence for a widely accessible drug resistance gene pool, FEMS Microbiol. Rev., 2007, vol. 31, pp. 449–477.

    Article  Google Scholar 

  24. Sevastsyanovich, Y.R., Krasowiak, R., Bingle, L.E.H., Haines, A.S., Sokolov, S.L., Kosheleva, I.A., Leuchuk, A.A., Titok, M.A., Smalla, K., and Tho-mas C.M., Diversity of IncP-9 plasmids of Pseudomonas, Microbiology (Reading), 2008, vol. 154, pp. 2929‒2941.

    Article  CAS  Google Scholar 

  25. Svobodová, K., Semerád, J., Petráčková, D., and Novotný, Č., Antibiotic resistance in czech urban wastewater treatment plants: microbial and molecular genetic characterization, Microb. Drug Resist., 2018, vol. 24, pp. 830–838.

    Article  Google Scholar 

  26. Wen, Q., Yang, L., Duan, R., and Chen, Z., Monitoring and evaluation of antibiotic resistance genes in four municipal wastewater treatment plants in Harbin, Northeast China, Environ. Pollut., 2016, vol. 212, pp. 34‒40.

    Article  CAS  Google Scholar 

  27. Yu, Z., Michel, F.C., Jr., Hansen, G., Wittum, T., and Morrison, M., Development and application of real-time PCR assays for quantification of genes encoding tetracycline resistance, Appl. Environ. Microbiol., 2005, vol. 71, pp. 6926‒6933.

    Article  CAS  Google Scholar 

  28. Yu, J., Liu, D., and Li, K., Influence of tetracycline on tetracycline-resistant heterotrophs and tet genes in activated sludge process, Curr. Microbiol., 2015, vol. 70, pp. 415–422.

    Article  CAS  Google Scholar 

  29. Zhang, B., Yu, Q., Yan, G., Zhu, H., Xu, X.Y., and Zhu, L., Seasonal bacterial community succession in four typical wastewater treatment plants: correlations between core microbes and process performance, Sci. Rep., 2018, vol. 8, art. 4566. https://doi.org/10.1038/s41598-018-22683-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang, X.X. and Zhang, T., Occurrence, abundance, and diversity of tetracycline resistance genes in 15 sewage treatment plants across China and other global locations, Environ. Sci. Technol., 2011, vol. 45, pp. 2598–2604

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Yu. Izmalkova.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by D. Timchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kosheleva, I.A., Izmalkova, T.Y., Sazonova, O.I. et al. Antibiotic-Resistant Microorganisms and Multiple Drug Resistance Determinants in Pseudomonas Bacteria from the Pushchino Wastewater Treatment Facilities. Microbiology 90, 187–197 (2021). https://doi.org/10.1134/S0026261721020077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261721020077

Keywords:

Navigation