Skip to main content
Log in

Thermal analysis of MHD convective slip transport of fractional Oldroyd-B fluid over a plate

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

The prime concern of this study is to analyze the generalized time-dependent magnetohydrodynamic (MHD) slip transport of an Oldroyd-B fluid near an oscillating upright plate. The plate is nested in a porous media under the action of ramped heating and nonlinear thermal radiation. Caputo–Fabrizio (CF) and Atangana–Baleanu (ABC) derivatives are utilized to constitute fractional partial differential equations that establish slip flow, shear stress, and heat transfer phenomena. Primarily, Laplace transformation is applied to dimensionless fractional models, and later Stehfest’s numerical algorithm is invoked to anticipate solutions of momentum and heat equations in principal coordinates. Moreover, computed solutions of velocity and energy fields are authenticated by Durbin’s and Zakian’s Laplace inversion algorithms. The relations for skin friction and Nusselt number are evaluated in terms of velocity and temperature gradients to efficiently anticipate shear stress and rate of heat transfer at the solid–fluid interface. The respective outcomes are manifested through tables. A critical examination of the current model is carried out and repercussions of variation in implanted parameters on temperature and momentum profiles are graphically elucidated. For the sake of comparison, three limiting fractional models, named second grade, Maxwell, and viscous models, are proposed for the isothermal and ramped temperature cases. Consequently, the observed outcomes affirm that under the isothermal condition, a generalized Maxwell fluid performs the swiftest slip transport compared to other models. Inversely, a second grade fluid specifies the highest velocity profile under ramped temperature case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Abro, K.A., Memon, A.A., Abro, S.H., Khan, I., Tlili, I.: Enhancement of heat transfer rate of solar energy via rotating Jeffrey nanofluids using Caputo–Fabrizio fractional operator: an application to solar energy. Energy Rep. 5, 41–49 (2019)

    Article  Google Scholar 

  • Ali, N., Khan, S.U., Sajid, M., Abbas, Z.: Flow and heat transfer of hydromagnetic Oldroyd-B fluid in a channel with stretching walls. Nonlinear Eng. 5(2), 73–79 (2016)

    Google Scholar 

  • Ali, F., Saqib, M., Khan, I., Sheikh, N.A.: Application of Caputo–Fabrizio derivatives to MHD free convection flow of generalized Walters’-B fluid model. Eur. Phys. J. Plus 131(10), 377 (2016)

    Article  Google Scholar 

  • Ali, F., Sheikh, N.A., Khan, I., Saqib, M.: Magnetic field effect on blood flow of Casson fluid in axisymmetric cylindrical tube: a fractional model. J. Magn. Magn. Mater. 423, 327–336 (2017)

    Article  Google Scholar 

  • Alkahtani, B.S.T., Atangana, A.: Modeling the potential energy field caused by mass density distribution with Eton approach. Open Phys. 14(1), 106–113 (2016)

    Article  Google Scholar 

  • Anwar, T., Khan, I., Kumam, P., Watthayu, W.: Impacts of thermal radiation and heat consumption/generation on unsteady MHD convection flow of an Oldroyd-B fluid with ramped velocity and temperature in a generalized Darcy medium. Mathematics 8(1), 130 (2020)

    Article  Google Scholar 

  • Asghar, S., Parveen, S., Hanif, S., Siddiqui, A.M., Hayat, T.: Hall effects on the unsteady hydromagnetic flows of an Oldroyd-B fluid. Int. J. Eng. Sci. 41(6), 609–619 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Atangana, A.: Non validity of index law in fractional calculus: a fractional differential operator with Markovian and non-Markovian properties. Phys. A, Stat. Mech. Appl. 505, 688–706 (2018)

    Article  MathSciNet  Google Scholar 

  • Atangana, A., Baleanu, D.: New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. Therm. Sci. 2(20), 763–769 (2016)

    Article  Google Scholar 

  • Atangana, A., Baleanu, D.: Caputo–Fabrizio derivative applied to groundwater flow within confined aquifer. J. Eng. Mech. 143(5), D4016005 (2017)

    Google Scholar 

  • Atangana, A., Gómez-Aguilar, J.F.: A new derivative with normal distribution kernel: theory, methods and applications. Phys. A, Stat. Mech. Appl. 476, 1–14 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Blake, T.D.: Slip between a liquid and a solid: DM Tolstoi’s (1952) theory reconsidered. Colloids Surf. 47, 135–145 (1990)

    Article  Google Scholar 

  • Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1(2), 1–13 (2015)

    Google Scholar 

  • Durbin, F.: Numerical inversion of Laplace transforms: An efficient improvement to Dubner and Abate’s method. Comput. J. 17(4), 371–376 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  • Elhanafy, A., Guaily, A., Elsaid, A.: Numerical simulation of Oldroyd-B fluid with application to hemodynamics. Adv. Mech. Eng. 11(5), 1687814019852844 (2019)

    Article  MATH  Google Scholar 

  • Farooq, U., Lu, D., Munir, S., Ramzan, M., Suleman, M., Hussain, S.: MHD flow of Maxwell fluid with nanomaterials due to an exponentially stretching surface. Sci. Rep. 9(1), 1–11 (2019)

    Article  Google Scholar 

  • Haq, S.U., Jan, S.U., Shah, S.I.A., Khan, I., Singh, J.: Heat and mass transfer of fractional second grade fluid with slippage and ramped wall temperature using Caputo–Fabrizio fractional derivative approach. AIMS Math. 5(4), 3056 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Henry, B.I., Langlands, T.A.M., Straka, P.: An introduction to fractional diffusion. In: Complex Physical, Biophysical and Econophysical Systems, pp. 37–89. World Scientific, Singapore (2010)

    Chapter  Google Scholar 

  • Hristov, J.: Transient heat diffusion with a non-singular fading memory: from the Cattaneo constitutive equation with Jeffrey’s kernel to the Caputo–Fabrizio time-fractional derivative. Therm. Sci. 20(2), 757–762 (2016)

    Article  Google Scholar 

  • Hristov, J.: Derivatives with non-singular kernels from the Caputo–Fabrizio definition and beyond: appraising analysis with emphasis on diffusion models. Front. Fract. Calc. 1, 270–342 (2017)

    Google Scholar 

  • Imran, M.A., Khan, I., Ahmad, M., Shah, N.A., Nazar, M.: Heat and mass transport of differential type fluid with non-integer order time-fractional Caputo derivatives. J. Mol. Liq. 229, 67–75 (2017)

    Article  Google Scholar 

  • Kahshan, M., Lu, D., Siddiqui, A.M.: A Jeffrey fluid model for a porous-walled channel: application to flat plate dialyzer. Sci. Rep. 9(1), 1–18 (2019)

    Article  Google Scholar 

  • Shah, N.A.: Khan, I.: Heat transfer analysis in a second grade fluid over and oscillating vertical plate using fractional Caputo–Fabrizio derivatives. Eur. Phys. J. C 76(7), 362 (2016)

    Article  Google Scholar 

  • Khan, I., Shah, N.A., Vieru, D.: Unsteady flow of generalized Casson fluid with fractional derivative due to an infinite plate. Eur. Phys. J. Plus 131(6), 181 (2016)

    Article  Google Scholar 

  • Khan, I., Shah, N.A., Mahsud, Y., Vieru, D.: Heat transfer analysis in a Maxwell fluid over an oscillating vertical plate using fractional Caputo–Fabrizio derivative. Eur. Phys. J. Plus 132(4), 194 (2017)

    Article  Google Scholar 

  • Khan, A.S., Nie, Y., Shah, Z.: Impact of thermal radiation on magnetohydrodynamic unsteady thin film flow of Sisko fluid over a stretching surface. Processes 7(6), 369 (2019)

    Article  Google Scholar 

  • Le Page, W.R.: Complex Variables and the Laplace Transform for Engineers. McGraw Hill Book Company, New York (1961)

    Google Scholar 

  • Martyushev, S.G., Sheremet, M.A.: Characteristics of Rosseland and P-1 approximations in modeling nonstationary conditions of convection-radiation heat transfer in an enclosure with a local energy source. J. Eng. Phys. Thermophys. 21(2), 111–118 (2012)

    Article  Google Scholar 

  • Navier, C.L.M.H.: Memoire surles du movement des. Mém. Acad. Sci. Inst. Fr. 1(6), 414–416 (1823)

    Google Scholar 

  • Pit, R., Hervet, H., Léger, L.: Friction and slip of a simple liquid at a solid surface. Tribol. Lett. 7(2), 147–152 (1999)

    Article  Google Scholar 

  • Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Elsevier, Amsterdam (1998)

    MATH  Google Scholar 

  • Raza, N., Awan, A.U., Haque, E.U., Abdullah, M., Rashidi, M.M.: Unsteady flow of a Burgers’ fluid with Caputo fractional derivatives: a hybrid technique. Ain Shams Eng. J. 10(2), 319–325 (2019)

    Article  Google Scholar 

  • Riaz, M.B., Imran, M.A., Shabbir, K.: Analytic solutions of Oldroyd-B fluid with fractional derivatives in a circular duct that applies a constant couple. Alex. Eng. J. 55(4), 3267–3275 (2016)

    Article  Google Scholar 

  • Saqib, M., Khan, I., Shafie, S.: Natural convection channel flow of CMC-based CNTs nanofluid. Eur. Phys. J. Plus 133(12), 549 (2018)

    Article  Google Scholar 

  • Saqib, M., Khan, I., Shafie, S.: Application of fractional differential equations to heat transfer in hybrid nanofluid: modeling and solution via integral transforms. Adv. Differ. Equ. 2019(1), 52 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Saqib, M., Khan, I., Shafie, S.: Shape effect in magnetohydrodynamic free convection flow of Sodium Alginate-Ferrimagnetic nanofluid. J. Therm. Sci. Eng. Appl. 11(4), 041019 (2019)

    Article  Google Scholar 

  • Shakeel, A., Ahmad, S., Khan, H., Shah, N.A., Haq, S.U.: Flows with slip of Oldroyd-B fluids over a moving plate. Adv. Math. Phys. 2016 (2016)

  • Sheikh, N.A., Ali, F., Saqib, M., Khan, I., Jan, S.A.A., Alshomrani, A.S., Alghamdi, M.S.: Comparison and analysis of the Atangana–Baleanu and Caputo–Fabrizio fractional derivatives for generalized Casson fluid model with heat generation and chemical reaction. Results Phys. 7, 789–800 (2017)

    Article  Google Scholar 

  • Sheng, H., Li, Y., Chen, Y.Q.: Application of numerical inverse Laplace transform algorithms in fractional calculus. J. Franklin Inst. 348(2), 315–330 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Siddique, I., Tlili, I., Bukhari, S.M., Mahsud, Y.: Heat transfer analysis in convective flows of fractional second grade fluids with Caputo–Fabrizio and Atangana–Baleanu derivative subject to Newtonion heating. Mech. Time-Depend. Mater., 1–21 (2020). https://doi.org/10.1007/s11043-019-09442-z

  • Stehfest, H.: Algorithm 368: numerical inversion of Laplace transforms [D5]. Commun. ACM 13(1), 47–49 (1970)

    Article  Google Scholar 

  • Tahir, M., Imran, M.A., Raza, N., Abdullah, M., Aleem, M.: Wall slip and non-integer order derivative effects on the heat transfer flow of Maxwell fluid over an oscillating vertical plate with new definition of fractional Caputo–Fabrizio derivatives. Results Phys. 7, 1887–1898 (2017)

    Article  Google Scholar 

  • Tahir, M., Naeem, M.N., Javaid, M., Younas, M., Imran, M., Sadiq, N., Safdar, R.: Unsteady flow of fractional Oldroyd-B fluids through rotating annulus. Open Phys. 16(1), 193–200 (2018)

    Article  Google Scholar 

  • Tanner, R.I.: Note on the Rayleigh problem for a visco-elastic fluid. J. Appl. Math. Phys. 13(6), 573–580 (1962)

    MathSciNet  MATH  Google Scholar 

  • Wan, R.: Some new global results to the incompressible Oldroyd-B model. J. Appl. Math. Phys. 70(1), 28 (2019)

    MathSciNet  MATH  Google Scholar 

  • Wang, B., Tahir, M., Imran, M., Javaid, M., Jung, C.Y.: Semi analytical solutions for fractional Oldroyd-B fluid through rotating annulus. IEEE Access 7, 72482–72491 (2019)

    Article  Google Scholar 

  • Zafar, A.A., Fetecau, C.: Flow over an infinite plate of a viscous fluid with non-integer order derivative without singular kernel. Alex. Eng. J. 55(3), 2789–2796 (2016)

    Article  Google Scholar 

  • Zakian, V.: Numerical inversion of Laplace transform. Electron. Lett. 5(6), 120–121 (1969)

    Article  MathSciNet  Google Scholar 

  • Zhu, Y., Granick, S.: Limits of the hydrodynamic no-slip boundary condition. Phys. Rev. Lett. 88(10), 106102 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support provided by the Center of Excellence in Theoretical and Computational Science(TaCS-CoE), KMUTT. Moreover, this research project is supported by Thailand Science Research and Innovation (TSRI) Basic Research Fund: Fiscal year 2021 under project number 64A306000005. The first author appreciates the support provided by Petchra Pra Jom Klao PhD Research Scholarship (Grant no. 14/2562).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Poom Kumam.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anwar, T., Kumam, P., Khan, I. et al. Thermal analysis of MHD convective slip transport of fractional Oldroyd-B fluid over a plate. Mech Time-Depend Mater 26, 431–462 (2022). https://doi.org/10.1007/s11043-021-09495-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-021-09495-z

Keywords

Navigation