Skip to main content
Log in

Role of Lightning NOx in Ozone Formation: A Review

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

This paper provides an overview on the spatiotemporal distribution and evolution mechanism of lightning. The predominant mechanism of ozone formation in the upper troposphere is lightning-induced precursors such as oxides of nitrogen (NOx), carbon monoxide (CO), and hydrocarbons (HC). Lightning-induced NOx (LNOx) is one of the major ordinary sources of NOx in the upper atmosphere, particularly in the tropical region, but it is still highly uncertain as to the exact quantity. Various ground measurements, satellite observations and modelling studies on the lightning and global NOx source rate have been extensively studied and compared to find the variability in estimated global lightning-induced NOx. Lightning can influence the climate via the production of nitrogen oxides (NO + NO2 = NOx) followed by the production of ozone, another efficient greenhouse gas. The global annual lightning NOx of 5 ± 3 Tg year−1 has been estimated by modelling studies with an ozone creation efficiency of 6.5 ± 4.7 times that of surface NOx sources. Understanding and quantifying the processes and production of lightning and LNOx is important for assessment of ozone concentrations and its associated impacts on the global climate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(Source: https://trmm.gsfc.nasa.gov/overview_dir/background.html)

Fig. 2

(Source: Cooray 2015)

Fig. 3

(Source: MacGorman and Rust 1998)

Fig. 4

(Source: Rakov and Uman 2005)

Fig. 5

(Source: Rakov and Uman 2005)

Similar content being viewed by others

References

  • Albrecht, R. I., Goodman, S. J., Buechler, D. E., Blakeslee, R. J., & Christian, H. J. (2016). Where are the lightning hotspots on Earth? Bulletin of the American Meteorological Society., 97(11), 2051–2068.

    Google Scholar 

  • Arndt, J. A., Aulinger, A., & Matthias, V. (2018). Quantification of lightning-induced nitrogen oxide emissions over Europe. Atmospheric Environment, 202, 128–141.

    Google Scholar 

  • Baker, M. B., Blyth, A. M., Christian, H. J., Latham, J., Miller, K. A., & Gadian, A. M. (1999). Relationships between lightning activity and various thundercloud parameters: Satellite and modelling studies. Atmospheric Research, 51(3–4), 221–236.

    Google Scholar 

  • Baker, M. B., Christian, H. J., & Latham, J. (1995). A computational study of the relationships linking lightning frequency and other thundercloud parameters. Quarterly Journal of the Royal Meteorological Society, 121(527), 1525–1548.

    Google Scholar 

  • Beirle, S., Huntrieser, H., & Wagner, T. (2010). Direct satellite observation of lightning-produced NOx. Atmospheric Chemistry and Physics., 10(22), 10965–10986.

    Google Scholar 

  • Beirle, S., Platt, U., Von Glasow, R., Wenig, M., & Wagner, T. (2004). Estimate of nitrogen oxide emissions from shipping by satellite remote sensing. Geophysical Research Letters, 31(18).

  • Beirle, S., Spichtinger, N., Stohl, A., Cummins, K. L., Turner, T., Boccippio, D., & Wagner, T. (2006). Estimating the NO x produced by lightning from GOME and NLDN data: A case study in the Gulf of Mexico. Atmospheric Chemistry and Physics, 6(4), 1075–1089.

    Google Scholar 

  • Berntsen, T., & Isaksen, I. S. (1999). Effects of lightning and convection on changes in tropospheric ozone due to NOx emissions from aircraft. Tellus B Chemical and Physical Meteorology, 51(4), 766–788.

    Google Scholar 

  • Boccippio, D. J., Cummins, K. L., Christian, H. J., & Goodman, S. J. (2001). Combined satellite-and surface-based estimation of the intracloud–cloud-to-ground lightning ratio over the continental United States. Monthly Weather Review, 129(1), 108–122.

    Google Scholar 

  • Boersma, K. F., Eskes, H. J., Meijer, E. W., & Kelder, H. M. (2005). Estimates of lightning NO x production from GOME satellite observations. Journal of Geophysical Research, 106(D21), 27701–27710.

    Google Scholar 

  • Bond, D. W., Steiger, S., Zhang, R., Tie, X., & Orville, R. E. (2002). The importance of NOx production by lightning in the tropics. Atmospheric Environment, 36(9), 1509–1519.

    Google Scholar 

  • Bradshaw, J., Davis, D., Grodzinsky, G., Smyth, S., Newell, R., Sandholm, S., et al. (2000). Observed distributions of nitrogen oxides in the remote free troposphere from the NASA global tropospheric experiment programs. Reviews of Geophysics, 38(1), 61–116.

    Google Scholar 

  • Brook, M., & Kitagawa, N. (1960). Electric-field changes and the design of lightning-flash counters. Journal of Geophysical Research, 65(7), 1927–1931.

    Google Scholar 

  • Bucsela, E. J., Pickering, K. E., Huntemann, T. L., Cohen, R. C., Perring, A. E., Gleason, J. F., Blakeslee, R. J., Albrecht, R. I., Holzworth, R., Cipriani, J. P., Vargas-Navarro, D., Mora-Segura, I., Pacheco, H., & Laporte Molina, A. S. (2010). Lightning-generated NOx seen by the ozone monitoring instrument during NASA’s tropical composition, cloud and climate coupling experiment (TC4). Journal of Geophysical Research Atmospheres, 115, 20.

    Google Scholar 

  • Carey, L. D., & Rutledge, S. A. (1996). A multiparameter radar case study of the microphysical and kinematic evolution of a lightning producing storm. Meteorology and Atmospheric Physics, 59(1–2), 33–64.

    Google Scholar 

  • Cecil, D. J., Buechler, D. E., & Blakeslee, R. J. (2015). TRMM LIS climatology of thunderstorm occurrence and conditional lightning flash rates. Journal of Climate, 28(16), 6536–6547.

    Google Scholar 

  • Chameides, W. L., Stedman, D. H., Dickerson, R. R., Rusch, D. W., & Cicerone, R. J. (1977). NOx production in lightning. Journal of Atmospheric Science, 34, 143–149.

    Google Scholar 

  • Choi, Y., Wang, Y., Zeng, T., Martin, R.V., Kurosu, T.P. and Chance, K. (2005). Evidence of lightning NOx and convective transport of pollutants in satellite observations over North America. Geophysical Research Letters, 32(2).

  • Christian, H. J., Blakeslee, R. J., Boccippio, D. J., Boeck, W. L., Buechler, D. E., Driscoll, K. T., Goodman, S. J., Hall, J. M., Koshak, W. J., Mach, D. M., & Stewart, M. F. (2003). Global frequency and distribution of lightning as observed from space by the Optical Transient Detector. Journal of Atmospheric Science, 108(D1), ACL-4.

    Google Scholar 

  • Christian, H., Blakeslee, R., Goodman, S., Mach, D., Stewart, M., Buechler, D., &Bocippio, D. J. (1999). The lightning imaging sensor. In NASA conference publication (pp. 746–749). NASA.

  • Cook, D. R., Liaw, Y. P., Sisterson, D. L., & Miller, N. L. (2000). Production of nitrogen oxides by a large spark generator. Journal of Geophysical Research Atmospheres, 105(D6), 7103–7110.

    Google Scholar 

  • Cooray, V. (2003). The Lightning Flash. The Institution of Engineering and Technology, Michael Faraday House, Six Hills Way, Stevenage SG1 2AY, UK: IET.

  • Cooray, V. (2015). An introduction to lightning. (pp. 97–116). Springer.

    Google Scholar 

  • Cooray, V., Rahman, M., & Rakov, V. (2009). On the NOx production by laboratory electrical discharges and lightning. Journal of Atmospheric and Solar-Terrestrial Physics, 71(17–18), 1877–1889.

    Google Scholar 

  • Cotton, W. R., Bryan, G., & van den Heever, S. C. (2011). Cumulonimbus clouds and severe convective storms. International Geophysics, 99, 315–454.

    Google Scholar 

  • Crutzen, P. J. (1970). The influence of nitrogen oxides on the atmospheric ozone content. Quarterly Journal of the Royal Meteorological Society, 96(408), 320–325.

    Google Scholar 

  • Crutzen, P. J. (1974). Estimates of possible future ozone reductions from continued use of fluoro-chloro methane’s (CF2Cl2, CFCl3). Geophysical Research Letters, 1(5), 205–208.

    Google Scholar 

  • Cummings, K. A., Huntemann, T. L., Pickering, K. E., Barth, M. C., Skamarock, W. C., Holler, H., Betz, H. D., Volz Thomas, A., & Schlager, H. (2013). Cloud-resolving chemistry simulation of a Hector thunderstorm. Atmospheric Chemistry and Physics, 13(5), 2757–2777.

    Google Scholar 

  • DeCaria, A. J., Pickering, K. E., Stenchikov, G. L., & Ott, L. E. (2005). Lightning-generated NOx and its impact on tropospheric ozone production: A three-dimensional modeling study of a Stratosphere-Troposphere Experiment: Radiation, Aerosols and Ozone (STERAO-A) thunderstorm. Journal of Geophysical Research Atmospheres, 110, D14.

    Google Scholar 

  • Ehhalt, D. H., & Drummond, J. W. (1999). The tropospheric cycle of NOx. In H. W. Georgii & W. Jaeschke (Eds.), Chemistry of the unpolluted and polluted troposphere. (pp. 219–251). D Reidel Publ Co.

    Google Scholar 

  • Erdmann, F., Defer, E., Caumont, O., Blakeslee, R. J., Pédeboy, S., & Coquillat, S. (2020). Concurrent satellite and ground-based lightning observations from the Optical Lightning Imaging Sensor (ISS-LIS), the low-frequency network Meteorage and the SAETTA Lightning Mapping Array (LMA) in the northwestern Mediterranean region. Atmospheric Measurement Techniques, 13(2), 853–875.

    Google Scholar 

  • Fehsenfeld, F. C., & Liu, S. C. (1994). Tropospheric ozone: Distribution and sources. In Global atmospheric chemical change (pp. 169–231). Dordrecht: Springer.

    Google Scholar 

  • Feingold, G., Eberhard, W. L., Veron, D. E., & Previdi, M. (2003). First measurements of the Twomey indirect effect using ground based remote sensors. Journal of Geophysical Research Letters, 30(6), 1287.

    Google Scholar 

  • Galloway, J. N., Dentener, F. J., Capone, D. G., Boyer, E. W., Howarth, R. W., Seitzinger, S. P., & Karl, D. M. (2004). Nitrogen cycles: Past, present, and future. Biogeochemistry, 70(2), 153–226.

    Google Scholar 

  • Gharaylou, M., Mahmoudian, A., Bidokhti, A. A., & Dadras, P. S. (2020). Mutual relationship between surface atmospheric pollutants and CG lightning in Tehran area. Environmental Monitoring and Assessment, 192(12), 1–12.

    Google Scholar 

  • Ghude, S. D., Kulkarni, P. S., Beig, G., Jain, S. L., & Arya, B. C. (2010). Global distribution of tropospheric ozone and its precursors: a view from space. International Journal of Remote Sensing, 31(2), 485–495.

    Google Scholar 

  • Goodman, S. J., Blakeslee, R. J., Koshak, W. J., Mach, D., Bailey, J., Buechler, D., Carey, L., Schultz, C., Bateman, M., McCaul, E., Jr., & Stano, G. (2013). The GOES-R geostationary lightning mapper (GLM). Atmospheric Research, 125, 34–49.

    Google Scholar 

  • Goodman, S. J., Christian, H. J., & Rust, W. D. (1988). A comparison of the optical pulse characteristics of intra-cloud and cloud-to-ground lightning as observed above clouds. Journal of Applied Meteorology and Climatology, 27(12), 1369–1381.

    Google Scholar 

  • Huntrieser, H., Schlager, H., Feigl, C., & Holler, H. (1998). Transport and production of NOx in electrified thunderstorms: Survey of previous studies and new observations at mid-latitudes. Journal of Geophysical Research., 103(28), 247–328. https://doi.org/10.1029/98JD02353.

    Article  Google Scholar 

  • Huntrieser, H., Schlager, H., Lichtenstern, M., Roiger, A., Stock, P., Minikin, A., Holler, H., Schmidt, K., Betz, H. D., Allen, G., Viciani, S., Ulanovsky, A., Ravegnani, F., & Brunner, D. (2009). NOx production by lightning in Hector: First airborne measurements during SCOUT-O3/ACTIVE. Atmospheric Chemistry and Physics, 9(21), 8377–8412. https://doi.org/10.5194/acp-9-8377-2009.

    Article  Google Scholar 

  • Huntrieser, H., Schlager, H., Lichtenstern, M., Stock, P., Hamburger, T., Holler, H., Schmidt, K., Betz, H. D., Ulanovsky, A., & Ravegnani, F. (2011). Mesoscale convective systems observed during AMMA and their impact on the NOx and O3 budget over West Africa. Atmospheric Chemistry and Physics, 11(6), 2503–2536. https://doi.org/10.5194/acp-11-25032011.

    Article  Google Scholar 

  • Huntrieser, H., Schumann, U., Schlager, H., Holler, H., Giez, A., Betz, H. D., BrunnerD, ForsterC., PintoJr, O., & Calheiros, R. (2008). Lightning activity in Brazilian thunderstorms during TROCCINOX: Implications for NOx production. Atmospheric Chemistry and Physics, 8(4), 921–953. https://doi.org/10.5194/acp-8-921-2008.

    Article  Google Scholar 

  • Hutchinson, G. E. (1954). The biogeochemistry of the terrestrial atmosphere. The earth as a planet.

  • Imyanitov, I. M., Chubarina, Y. V, & Shvarts, Y. M. (1971). Electricity of clouds. Leningrad: Gidrometeoizdat, p 92 (NASA Technical Translation from Russian NASA, TT-F-718,1972).

  • Intergovernmental Panel on Climate Change. (1995). Climate change 1994, radiative forcing of climate change, and evaluation of the IPCC IS92 emission scenarios. Cambridge University Press.

    Google Scholar 

  • IPCC: Climate Change. (2001). Synthesis report. In R. T. Watson & Core Writing Team (Eds.), A Contribution of Working Groups I, II, and III to the third assessment report of the intergovernmental panel on climate change. (p. 398). Cambridge University Press.

    Google Scholar 

  • IPCC AR4 WG1 (2007), Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., Miller, H. L. (eds.), Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, ISBN 978-0-521-88009-1.

  • Jaffe, D. A., & Wigder, N. L. (2012). Ozone production from wildfires: A critical review. Atmospheric Environment, 51, 1–10.

    Google Scholar 

  • Joshi, M. M., Gregory, J. M., Webb, M. J., Sexton, D. M., & Johns, T. C. (2008). Mechanisms for the land/sea warming contrast exhibited by simulations of climate change. Climate Dynamics, 30(5), 455–465.

    Google Scholar 

  • Jourdain, L., Kulawik, S. S., Worden, H. M., Pickering, K. E., Worden, J. R., & Thompson, A. M. (2010). Lightning NOx emissions over the USA constrained by TES ozone observations and the GEOS-Chem model. Atmospheric Chemistry and Physics, 10(1), 107–119. https://doi.org/10.5194/acp-10-107-2010.

    Article  Google Scholar 

  • Kandalgaonkar, S. S., Tinmaker, M. I. R., Nath, A., Kulkarni, M. K., & Trimbake, H. K. (2005). Study of thunderstorm and rainfall activity over the Indian region. Atmosfera, 18(2), 91–101.

    Google Scholar 

  • Kaynak, B., Hu, Y., Martin, R. V., Russell, A. G., Choi, Y., & Wang, Y. (2008). The effect of lightning NO x production on surface ozone in the continental United States. Atmospheric Chemistry Physics, 8(17), 5151–5159.

    Google Scholar 

  • Koshak, W. J., Peterson, H., Biazar, A. P., Khan, M., & Wang, L. (2014). The NASA lightning nitrogen oxides model (LNOM): Application to air quality modeling. Atmospheric Research, 135–136, 363–369.

    Google Scholar 

  • Krehbiel, P. R. (1986). The electrical structure of thunderstorms. In E. P. Kriderand & R. G. Roble (Eds.), The earth’s electrical environment. (pp. 90–113). National Academy Press.

    Google Scholar 

  • Kumar, P. R., & Kamra, A. K. (2012). Land–sea contrast in lightning activity over the sea and peninsular regions of South/Southeast Asia. Atmospheric research, 118, 52–67.

    Google Scholar 

  • Kummerow, C., Simpson, J., Thiele, O., Barnes, W., Chang, A. T. C., Stocker, E., & Ashcroft, P. (2000). The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. Journal of applied meteorology, 39(12), 1965–1982.

    Google Scholar 

  • Labrador, L. J., von Kuhlmann, R., & Lawrence, M. G. (2004). Strong sensitivity of the global mean OH concentration and the tropospheric oxidizing efficiency to the source of NOx from lightning. Geophysical Research Letters, 31, 6.

    Google Scholar 

  • Lal, D. M., Ghude, S. D., Mahakur, M., Waghmare, R. T., Tiwari, S., Srivastava, M. K., Meena, G. S., & Chate, D. M. (2018). Relationship between aerosol and lightning over Indo-Gangetic Plain (IGP). Climate Dynamics, 50(9–10), 3865–3884.

    Google Scholar 

  • Lal, D. M., Ghude, S. D., Patil, S. D., Kulkarni, S. H., Jena, C., Tiwari, S., & Srivastava, M. K. (2012). Tropospheric ozone and aerosol long-term trends over the Indo-Gangetic Plain (IGP), India. Atmospheric Research, 116, 82–92.

    Google Scholar 

  • Lal, D. M., Ghude, S. D., Singh, J., & Tiwari, S. (2014). Relationship between size of cloud ice and lightning in the tropics. Advanced Atmospheric Science, 20, 20.

    Google Scholar 

  • Lang, T. J., & Rutledge, S. A. (2002). Relationships between convective storm kinematics, precipitation, and lightning. Monthly Weather Review, 130(10), 2492–2506.

    Google Scholar 

  • Laughner, J. L., & Cohen, R. C. (2017). Quantification of the effect of modelled lightning NO2 on UV–visible air mass factors. Atmospheric Measurement Techniques, 10(11), 4403–4419.

    Google Scholar 

  • Law, K., Pan, L., Wernli, H., Fischer, H., Haynes, P. H., Salawitch, R., et al. (2006). Processes governing the chemical composition of the extratropical UTLS – A report from the joint SPARC-IGAC Workshop. SPARC Newsletter, 26, 8–19.

  • Lawrence, M. G., Chameides, W. L., Kasibhatla, P. S., Levy, H., II., & Moxim, W. (1995). Lightning and atmospheric chemistry: The rate of atmospheric NO production. In H. Volland (Ed.), Handbook of atmospheric electrodynamics. (pp. 189–202). CRC Press.

    Google Scholar 

  • Lee, D. S., Kohler, I., Grobler, E., Rohrer, F., Sausen, R., GallardoKlenner, L., et al. (1997). Estimations of global NOx emissions and their uncertainties. Atmospheric Environment, 31, 1735–1749.

    Google Scholar 

  • Levine, J. S., Augustsson, T. R., Andersont, I. C., Hoell Jr, J. M., & Brewer, D. A. (1984). Tropospheric sources of NOx: Lightning and biology. Atmospheric Environment (1967), 18(9), 1797–1804.

  • Levy, H., II., Moxim, W. J., & Kasibhatla, P. S. (1996). A global three-dimensional time-dependent lightning source of tropospheric NOx. Journal of Geophysical Research, 101, 22911–22922.

    Google Scholar 

  • Lhermitte, R., & Williams, E. (1985). Thunderstorm electrification: A case study. Journal of Geophysical Research Atmospheres, 90(D4), 6071–6078.

    Google Scholar 

  • Liaskos, C. E., Allen, D. J., & Pickering, K. E. (2015). Sensitivity of tropical tropospheric composition to lightning NOx production as determined by replay simulations with GEOS-5. Journal of Geophysical Research Atmospheres, 120(16), 8512–8534.

    Google Scholar 

  • Liaw, Y. P., Sisterson, D. L., & Miller, N. L. (1990). Comparison of field, laboratory, and theoretical estimates of global nitrogen fixation by lightning. Journal of Geophysical Research Atmospheres, 95(D13), 22489–22494.

    Google Scholar 

  • Liu, R. X., Lu, Q. F., Min, C., Zhang, Y., & Li, X. Q. (2020). Quality assessment of FY-4A lightning data in Inland China. Journal of Tropical Meteorology, 3, 286–299.

    Google Scholar 

  • Liu, S. C., Trainer, M., Fehsenfeld, F. C., Parrish, D. D., Williams, E. J., Fahey, D. W., & Murphy, P. C. (1987). Ozone production in the rural troposphere and the implications for regional and global ozone distributions. Journal of Geophysical Research Atmospheres, 92(D4), 4191–4207.

    Google Scholar 

  • Liu, Y., Wang, H., Li, Z., & Wang, Z. (2021). A verification of the lightning detection data from FY-4A LMI as compared with ADTD-2. Atmospheric Research, 248, 105163.

    Google Scholar 

  • Logan, J. A. (1983). Nitrogen oxides in the troposphere: Global and regional budgets. Journal of Geophysical Research, 88, 10785–10807.

    Google Scholar 

  • Logan, J. A., Prather, M. J., Wofsy, S. C., & McElroy, M. B. (1981). Tropospheric chemistry: A global perspective. Journal of Geophysical Research Oceans, 86(C8), 7210–7254.

    Google Scholar 

  • MacGorman, D. R., & Burgess, D. W. (1994). Positive cloud-to-ground lightning intornadic storms and hailstorms. Monthly Weather Review, 122, 1671–1697.

    Google Scholar 

  • MacGorman, D. R., & Rust, W. D. (1998). The electrical nature of storms. Oxford University Press.

    Google Scholar 

  • Mach, D. M., Blakeslee, R. J., & Bateman, M. G. (2011). Global electric circuit implications of combined aircraft storm electric current measurements and satellite-based diurnal lightning statistics. Journal of Geophysical Research Atmosphere, 116, D5.

    Google Scholar 

  • Marchand, M., Hilburn, K., & Miller, S. D. (2019). Geostationary lightning mapper and earth networks lightning detection over the contiguous united states and dependence on flash characteristics. Journal of Geophysical Research Atmospheres, 124(21), 11552–11567.

    Google Scholar 

  • Marshall, T. C., Stolzenburg, M., Maggio, C. R., Coleman, L. M., Krehbiel, P. R., Hamlin, T., & Rison, W. (2005). Observed electric fields associated with lightning initiation. Geophysical Research Letters, 32, 3.

    Google Scholar 

  • Martini, M., Allen, D. J., Pickering, K. E., Stenchikov, G. L., Richter, A., Hyer, E. J., & Loughner, C. P. (2011). The impact of North American anthropogenic emissions and lightning on long-range transport of trace gases and their export from the continent during summers 2002 and 2004. Journal of Geophysical Research Atmosphere. https://doi.org/10.1029/2010JD014305.

    Article  Google Scholar 

  • Matsui, T., Chern, J. D., Tao, W. K., Lang, S., Satoh, M., Hashino, T., & Kubota, T. (2016). On the land–ocean contrast of tropical convection and microphysics statistics derived from TRMM satellite signals and global storm-resolving models. Journal of Hydrometeorology, 17(5), 1425–1445.

    Google Scholar 

  • Miyazaki, K., Eskes, H. J., Sudo, K., & Zhang, C. (2014). Global lightning NOx production estimated by an assimilation of multiple satellite data sets. Atmospheric Chemistry and Physics, 14(7), 3277–3305. https://doi.org/10.5194/acp-14-3277-2014.

    Article  Google Scholar 

  • Moore, C. B., & Vonnegut, B. (1977). The thundercloud. In R. H. Golde (Ed.), Lightning, vol. 1, physics of lightning. (pp. 51–98). Academic Press.

    Google Scholar 

  • Murray, L. T., Jacob, D. J., Logan, J. A., Hudman, R. C., & Koshak, W. J. (2012). Optimized regional and inter-annual variability of lightning in a global chemical transport model constrained by LIS/OTD satellite data. Journal of Geophysical Research Atmospheres, 117, D20.

    Google Scholar 

  • Myhre, G., Samset, B. H., Schulz, M., Balkanski, Y., Bauer, S., Berntsen, T. K., & Easter, R. C. (2013). Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations. Atmospheric Chemistry and Physics, 13(4), 1853.

    Google Scholar 

  • Nault, B. A., Laughner, J. L., Wooldridge, P. J., Crounse, J. D., Dibb, J., Diskin, G., & Scheuer, E. (2017). Lightning NOx emissions: Reconciling measured and modeled estimates with updated NOx chemistry. Geophysical Research Letters, 44(18), 9479–9488.

    Google Scholar 

  • Orville, R. E., & Henderson, R. W. (1986). Global distribution of midnight lightning: September 1977 to August 1978. Monthly Weather Review, 114(12), 2640–2653.

    Google Scholar 

  • Ott, L. E., Pickering, K. E., Stenchikov, G. L., Allen, D. J., DeCaria, A. J., Ridley, B. A., Lin, R. F., Lang, S., & Tao, W. K. (2010). Production of lightning NOx and its vertical distribution calculated from three dimensional cloud-scale chemical transport model simulations. Journal of Geophysical Research Atmosphere. https://doi.org/10.1029/2009JD011880.

    Article  Google Scholar 

  • Pawar, V. S., Domkawale, M. A., Pawar, S. D., Salvekar, P. S., & Pradeep Kumar, P. (2017). Inter annual variability of tropospheric NO2 and tropospheric ozone over Maharashtra (India): The role of lightning. Remote Sensing Letters, 8(11), 1015–1024.

    Google Scholar 

  • Peng, J., et al. (2016). Markedly enhanced absorption and direct radiative forcing of black carbon under polluted urban environments. Proceedings of the National Academy of Sciences of the United States of America, 113, 4266–4271.

    Google Scholar 

  • Phillips, B. B. (1967). Convected cloud charge in thunderstorms. Monthly Weather Review, 95, 863–870.

    Google Scholar 

  • Pickering, K. E., Wang, Y., Tao, W. K., Price, C., & Müller, J. F. (1998). Vertical distributions of lightning NOx for use in regional and global chemical transport models. Journal of Geophysical Research Atmosphere, 103(D23), 31203–31216.

    Google Scholar 

  • Pollack, I. B., Homeyer, C. R., Ryerson, T. B., Aikin, K. C., Peischl, J., Apel, E. C., Campos, T., Flocke, F., Hornbrook, R. S., Knapp, D. J., Montzka, D. D., Weinheimer, A. J., Riemer, D., Diskin, G., Sachse, G., Mikoviny, T., Wisthaler, A., Bruning, E., MacGorman, D., … Barth, M. C. (2016). Airborne quantification of upper tropospheric NOx production from lightning in deep convective storms over the United States Great Plains. Journal of Geophysical Research Atmosphere, 121(4), 2002–2028.

    Google Scholar 

  • Price, C., Penner, J., & Prather, M. (1997). NOx from lightning Global distribution based on lightning physics. Journal of Geophysical Research Atmosphere, 102(D5), 5929–5941.

    Google Scholar 

  • Rakov, V. A., & Uman, M. A. (2005). Lightning: Physics and effects. Cambridge University Press.

    Google Scholar 

  • Ranalkar, M. R., & Chaudhari, H. S. (2009). Seasonal variation of lightning activity over the Indian subcontinent. Meteorology and Atmospheric Physics, 104(1–2), 125–134.

    Google Scholar 

  • Reap, R. M., & Mac Gorman, D. R. (1989). Cloud-to-ground lightning: Climatological characteristics and relationships to model fields, radar observations, and severe local storms. Monthly Weather Review, 117(3), 518–535.

    Google Scholar 

  • Ridley, B. A., Dye, J. E., Walega, J. G., Zheng, J., Grahek, F. E., & Rison, W. (1996). On the production of active nitrogen by thunderstorms over New Mexico. Journal of Geophysical Research: Atmospheres, 101(D15), 20985–21005.

    Google Scholar 

  • Ridley, B., Ott, L., Pickering, K., Emmons, L., Montzka, D., Weinheimer, A., & McGill, M. (2004). Florida thunderstorms: A faucet of reactive nitrogen to the upper troposphere. Journal of Geophysical Research Atmospheres, 109, D17.

    Google Scholar 

  • Rudlosky, S. D., Goodman, S. J., Virts, K. S., & Bruning, E. C. (2019). Initial geostationary lightning mapper observations. Geophysical Research Letters, 46(2), 1097–1104.

    Google Scholar 

  • Rust, W. D., MacGorman, D. R., & Arnold, R. T. (1981). Positive cloud-to-ground lightning flashes in severe storms. Geophysical Research Letters, 8(7), 791–794.

    Google Scholar 

  • Rutledge, S. A., Williams, E. R., & Keenan, T. D. (1992). The down under Doppler and electricity experiment (DUNDEE): Overview and preliminary results. Bulletin of the American Meteorological Society, 73, 3–16.

    Google Scholar 

  • Saunders, C. P. R., Keith, W. D., & Mitzeva, R. P. (1991). The effect of liquid water on thunderstorm charging. Journal of Geophysical Research Atmosphere, 96(6), 11007–11017.

    Google Scholar 

  • Schumann, U., & Huntrieser, H. (2007). The global lightning-induced nitrogen oxides source. Atmospheric Chemistry and. Physics, 7(14), 3823–3907.

    Google Scholar 

  • Seimon, A. (1993). Anomalous cloud-to-ground lightning in an F5-tornado-producing supercell thunderstorm on 28 August 1990. Bulletin of the American Meteorological Society, 74(2), 189–204.

    Google Scholar 

  • Shao, X. M., & Krehbiel, P. R. (1996). The spatial and temporal development of intracloud lightning. Journal of Geophysical Research Atmospheres, 101(D21), 26641–26668.

    Google Scholar 

  • Shi, Z., Tan, Y. B., Tang, H. Q., Sun, J., Yang, Y., Peng, L., & Guo, X. F. (2015). Aerosol effect on the land-ocean contrast in thunderstorm electrification and lightning frequency. Atmospheric Research, 164, 131–141.

    Google Scholar 

  • Siingh, D., Buchunde, P. S., Gandhi, H., Singh, R., Singh, S., Patil, M. N., & Singh, R. P. (2015). Lightning and convective rain over Indian peninsula and Indo-China peninsula. Advances in Space Research, 55(4), 1085–1103.

    Google Scholar 

  • Simpson, J., Kummerow, C., Tao, W. K., & Adler, R. F. (1996). On the tropical rainfall measuring mission (TRMM). Meteorology and Atmospheric Physics, 60(1–3), 19–36.

    Google Scholar 

  • Sinha, A., & Toumi, R. (1997). Tropospheric ozone, lightning, and climate change. Journal of Geophysical Research Atmospheres, 102(D9), 10667–10672.

    Google Scholar 

  • Stevenson, D. S., Young, P. J., Naik, V., Lamarque, J. F., Shindell, D. T., Voulgarakis, A., et al. (2013). Tropospheric ozone changes, radiative forcing and attribution to emissions in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmospheric Chemistry and Physics, 13(6), 3063–3085.

  • Stolzenburg, M., & Marshall, T. C. (1998). Charged precipitation and electric field in two thunderstorms. Journal of Geophysical Research Atmospheres, 103(D16), 19777–19790.

    Google Scholar 

  • Stolzenburg, M., & Marshall, T. C. (2009). Electric field and charge structure in lightning-producing clouds. In Lightning: Principles, instruments and applications (57–82).

  • Takahashi, T. (1978). Riming electrification as a charge generation mechanism in thunderstorms. Journal of Atmospheric Science, 35, 1536–1548.

    Google Scholar 

  • Takahashi, T. (1984). Thunderstorm electrification—a numerical study. Journal of the Atmospheric Sciences, 41(17), 2541–2558.

    Google Scholar 

  • Tie, X., Zhang, R., Brasseur, G., & Lei, W. (2002). Global NOx production by lightning. Journal of Atmospheric Chemistry, 43(1), 61–74.

    Google Scholar 

  • Tinmaker, I. R., & Chate, D. M. (2013). Lightning activity over India: A study of east–west contrastInt. Journal of Remote Sensing, 34(16), 5641–5650.

    Google Scholar 

  • Tinmaker, I. R., & Chate, D. M. (2013). Lightning activity over India: A study of east–west contrast. International Journal of Remote Sensing, 34(16), 5641–5650.

    Google Scholar 

  • Tinmaker, M. I. R., Ali, K., & Beig, G. (2010). Relationship between lightning activity over peninsular India and sea surface temperature. Journal of Applied Meteorology and Climatology, l49(4), 828–835.

    Google Scholar 

  • Tinmaker, M. I. R., Aslam, M. Y., & Chate, D. M. (2015). Lightning activity and its association with rainfall and convective available potential energy over Maharashtra. India. Natural Hazards, 77(1), 293–304.

    Google Scholar 

  • Tinmaker, M. I. R., Ghude, S. D., & Chate, D. M. (2019). Land-sea contrasts for climatic lightning activity over Indian region. Theoretical and Applied Climatology, 138(1–2), 931–940.

    Google Scholar 

  • Toumi, R., Haigh, J. D., & Law, K. S. (1996). A tropospheric ozone-lightning climate feedback. Geophysical Research Letters, 23(9), 1037–1040.

    Google Scholar 

  • Tuck, A. F. (1976). Production of nitrogen oxides by lightning discharges. Quarterly Journal of the Royal Meteorological Society, 102, 749–755.

    Google Scholar 

  • Uman, M. A. (1987). The lightning discharges, Vol 25. (pp. 103–105). Academic Press.

    Google Scholar 

  • Vonnegut, B. (1953). Possible mechanism for the formation of thunderstorm electricity. Bulletin of the American Meteorological Society, 34, 378–381.

    Google Scholar 

  • Williams, E. R. (1985). Large scale charge separation in thunderclouds. Journal of Geophysical Research, 90, 6013–6025.

    Google Scholar 

  • Williams, E. R. (2001). The electrification of severe storms. Severe convective storms. (pp. 527–561). American Meteorological Society.

    Google Scholar 

  • Williams, E. R. (2005). Lightning and climate: A review. Atmospheric Research, 76(1–4), 272–287.

    Google Scholar 

  • Williams, E. (2009). Lightning activity in winter storms. A Meteorological and Global frequency and distribution of lightning as observed from space by the Optical Transient Detector. Journal of Geophysical Research Atmosphere, 108(D1), ACL-4.

    Google Scholar 

  • Williams, E. R. (2017). Meteorological aspects of thunderstorms. Handbook of atmospheric electrodynamics, Vol. 1. (pp. 27–60). CRC Press.

    Google Scholar 

  • Williams, E. R., & Heckman, S. J. (1993). The local diurnal variation of cloud electrification and the global diurnal variation of negative charge on the Earth. Journal of Geophysical Research Atmosphere, 98(D3), 5221–5234.

    Google Scholar 

  • Williams, E. R., & Lhermitte, R. M. (1983). Radar tests of the precipitation hypothesis for thunderstorm electrification. Journal of Geophysical Research Oceans, 88(C15), 10984–10992.

    Google Scholar 

  • Williams, E., Mushtak, V., Rosenfeld, D., Goodman, S., & Boccippio, D. (2005). Thermodynamic conditions favorable to superlative thunderstorm updraft, mixed phase microphysics and lightning flash rate. Atmospheric Research, 76(1–4), 288–306.

    Google Scholar 

  • Williams, E., Rothkin, K., Stevenson, D., & Boccippio, D. (2000). Global lightning variations caused by changes in thunderstorm flash rate and by changes in the number of thunderstorms. Journal of Applied Meteorology, 39(12), 2223–2230.

    Google Scholar 

  • Williams, E., & Stanfill, S. (2002). The physical origin of the land-ocean contrast in lightning activity. ComptesRendus Physique, 3(10), 1277–1292.

    Google Scholar 

  • Williams, E. R., Weber, M. E., & Orville, R. E. (1989). The relationship between lightning type and convective state of thunderclouds. Journal of Geophysical Research Atmosphere, 94(11), 13213–13220.

    Google Scholar 

  • Williams, E. R., Zhang, R., & Rydock, J. (1991). Mixed-phase microphysics and cloud electrification. Journal of Atmospheric Science, 48(19), 2195–2203.

    Google Scholar 

  • Wilson, C. T. R. (1956). A theory of thundercloud electricity. Proc. Roy. Soc. A, 236, 297–317.

    Google Scholar 

  • WMO, Scientific assessment of ozone depletion (1998). World Meteorological Organization, Global Ozone Research and Monitoring Project- Report No. 44, Geneva, Switzerland, 1999.

  • Workman, E. J., & Reynolds, S. E. (1949). Electrical activity as related to thunderstorm cell growth. Bulletin of the American Meteorological Society, 30(4), 142–144.

    Google Scholar 

  • Yadava, P. K., Soni, M., Verma, S., Kumar, H., Sharma, A., & Payra, S. (2020). The major lightning regions and associated casualties over India. Natural Hazards, 101(1), 217–229.

    Google Scholar 

  • Zhang, R., Sanger, N. T., Orville, R. E., Tie, X., Randel, W., & Williams, E. R. (2000). Enhanced NOx by lightning in the upper troposphere and lower stratosphere inferred from the UARS global NO2 measurements. Geophysical Research Letters, 27(5), 685–688.

    Google Scholar 

  • Zhu, Q., Laughner, J. L., & Cohen, R. C. (2019). Lightning NO 2 simulation over the contiguous US and its effects on satellite NO 2 retrievals. Atmospheric Chemistry and Physics, 19(20), 13067–13078.

    Google Scholar 

  • Ziegler, C. L., & MacGorman, D. R. (1994). Observed lightning morphology relative to modeled space charge and electric field distributions in a tornadic storm. Journal of the Atmospheric Sciences, 51(6), 833–851.

    Google Scholar 

Download references

Acknowledgements

We gratefully thank the Earth Observatory System and Earth System Science Program for providing the TRMM data. The second author would like to thank Mr. Amit Singh, Ms. Priyanshu Gupta and Ms. Janhavi Singh for the support and extending help during the study. The corresponding author would also like to thank funding support under MoES (MoES/16/18/2017-RDEAS) project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swagata Payra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, S., Yadava, P.K., Lal, D.M. et al. Role of Lightning NOx in Ozone Formation: A Review. Pure Appl. Geophys. 178, 1425–1443 (2021). https://doi.org/10.1007/s00024-021-02710-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-021-02710-5

Keywords

Navigation