Skip to main content
Log in

Crystal chemistry and Raman spectroscopy of two synthetic sodalite-type aluminosilicates with [MoO4]2− and [WO4]2− groups

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The synthetic nosean- and haüyne-like aluminosilicates with (MoO4)2− and (WO4)2− extra-framework anions were synthesized in H2O-bearing systems (3 kbar, 750 °C) and studied by means of electron microprobe analysis, Raman spectroscopy, powder and single-crystal X-ray diffraction. The nosean-like phase contains up to 10.6 wt% MoO3 and up to 5.1 wt% WO3; the maximum content of MoO3 in the haüyne-like phase is 22.5 wt%. The nosean-like phase with (MoO4)2− and (WO4)2− is cubic, P-43m, a = 9.1278(10) Å, V = 760.498(14) Å3, Z = 1. This compound with the crystal chemical formula Na7.68[(Al,Si)12O24] {[(Mo0.65W0.35)O4]0.780.22}·H2O has a disordered Al/Si framework, that is caused by the high temperature of crystallization (t = 750 °C) with further quenching at room temperature. Despite the same conditions of synthesis, the haüyne-like phase with (MoO4)2−, Na5.12Ca1.92[Al6Si6O24](MoO4)1.52 has an Al/Si-ordered framework. Its space group is P-43n, a = 9.1516(4) Å, V = 766.46(6) Å3, Z = 1. In both synthesized sodalite-type aluminosilicates the anion groups (MoO4)2− and (WO4)2− are dynamically disordered. The polarized Raman spectra of both aluminosilicates show that Raman-active modes of (MoO4)2− and (WO4)2− correspond to vibrations of tetrahedral anions with symmetry Td. The presence of H2O was fixed only in the nosean-like compound and no preferred orientation of water molecule was detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agilent Technologies (2014) CrysAlisPro software system, version 1.171.37.35. Agilent Technologies UK Ltd, Oxford

    Google Scholar 

  • Ariai J, Smith SRP (1981) The Raman spectrum and analysis of phonon modes in sodalite. J Phys C Solid State Phys 14:1193–1202

    Article  Google Scholar 

  • Brenchley ME, Weller MI (1994) Synthesis and structures of M8(AlSiO4)6(XO4)2, M=Na, Li, K; X=Cl, Mn sodalites. Zeolites 14:682–686

    Article  Google Scholar 

  • Britvin SN, Dolivo-Dobrovolsky DV, Krzhizhanovskaya MG (2017) Software for processing the X-ray powder diffraction data obtained from the curved image plate detector of Rigaku RAXIS Rapid II diffractometer. Zapiski Rossiiskogo Mineralogicheskogo Obshchestva 146(3):104–107 (in Russian)

    Google Scholar 

  • Bu X, Gier TE, Feng P, Stucky GD (1998) Template control of framework topology and charge in new phosphate- and arsenate-based sodalite analogs. Microporous Mesopororous Mater 20:371–379

    Article  Google Scholar 

  • Chukanov NV, Vigasina MF, Zubkova NV, Pekov IV, Schafer C, Kasatkin AV, Yapaskurt VO, Pushcharovsky DYu (2020) Extra-framework content in sodalite-group minerals: complexity and new aspects of its study using infrared and Raman spectroscopy. Minerals 10:363

    Article  Google Scholar 

  • Creighton JA, Deckman HW, Newsam JM (1994) Computer simulation and interpretation of the infrared and Raman spectra of sodalite frameworks. J Phys Chem 98:448–459

    Article  Google Scholar 

  • Depmeier W (1984) Tetragonal tetrahedra distortions in cubic sodalite frameworks. Acta Crystallogr Sect B Struct Sci 40(3):185–191

    Article  Google Scholar 

  • Depmeier W (1988a) Aluminate sodalite—a family with strained structures and ferroic phase transitions. Phys Chem Miner 15:419–426

    Article  Google Scholar 

  • Depmeier W (1988b) Structure of cubic aluminate sodalite Ca8(Al12O24)(WO4)2 in comparison with its orthorhombic phase and with cubic Sr8(Al12O24)(CrO4)2. Acta Crystallogr 44:201–207

    Article  Google Scholar 

  • Depmeier W (1999) Structural distortions and modulations in microporous materials. Mol Sieves 2:113–137

    Article  Google Scholar 

  • Depmeier W (2005) The sodalite family—a simple but versatile framework structure. Rev Miner Geochem 57:203–240

    Article  Google Scholar 

  • Depmeier W, Buhrer W (1991) Aluminate sodalites: Sr8[Al12O24](MoO4)2 (SAM) at 293, 423, 523, 623 and 723 K and Sr8[Al12O24](WO4)2 (SAW) at 293 K. Acta Crystallogr B 47:197–206

    Article  Google Scholar 

  • Fischer RX, Baur WH (2009) Symmetry relationships of sodalite (SOD)—type crystal structures. Z Kristallogr 224:185–197

    Article  Google Scholar 

  • Frost RL, Musumeci AW, Martens WN, Moses OA, Bouzaid J (2005) Raman spectroscopy of hydrotalcites with molybdate and chromate in the interlayer. J Raman Spectrosc 36:925–931

    Article  Google Scholar 

  • Gesing TM, Buhl JC (1998) Crystal structure of a carbonate-nosean Na8[AlSiO4]6CO3. Eur J Miner 10:71–78

    Article  Google Scholar 

  • Hager IZ, El-Mallawany R (1999) Infrared and Raman spectra of new molybdenum and tungsten oxyfluoride glasses. J Mater Sci 34:5163–5168

    Article  Google Scholar 

  • Hardcastle FD, Wachs IE (1995) Determination of the molecular structures of tungstates by Raman spectroscopy. J Raman Spectrosc 26:397–405

    Article  Google Scholar 

  • Hasha D, Saldarriaga LS, Saldarriaga C, Hathaway PE, Cox DF, Davis ME (1988) Studies of silicoaluminophosphates with the sodalite structure. J Am Chem Soc 110:2127–2135

    Article  Google Scholar 

  • Hassan I, Buseck PR (1989) Incommensurate-modulated structure of nosean, a sodalite-group mineral. Am Miner 74:394–410

    Google Scholar 

  • Hassan I, Grundy HD (1989) The structure of nosean, ideally Na8[Al6Si6O24]SO4 H2O. Can Miner 27:165–172

    Google Scholar 

  • Hetmann K, Wenzel T, Marks M, Markl G (2012) The sulfur speciation in S-bearing minerals: new constraints by a combination of electron microprobe analysis and DFT calculations with special reference to sodalite-group minerals. Am Miner 97:1653–1661

    Article  Google Scholar 

  • Hu X, Depmeier W, Wildermuth G, Doyle S (1996) New phase transitions in the solid solution system (Ca1xSrx)8(Al12O24) (WO4)2. Z Kristallogr 211:679–688

    Google Scholar 

  • Kolesov BA (2006) Raman spectra of single H2O molecules isolated in cavities of crystals. J Struct Chem 47(1):21–34

    Article  Google Scholar 

  • Mattigod SV, McGrail BP, McCready DE, Wang L, Parker KE, Young JS (2006) Synthesis and structure of perrhenate sodalite. Microporous Mesopororous Mater 91:139–144

    Article  Google Scholar 

  • Neurgaonkar RR, Hummel FA (1976) Substitutions in the Ca2Na6Al6Si6O24(SO4)2 haüyne structure. Mater Res Bull 11:61–66

    Article  Google Scholar 

  • Pekov IV, Olysych LV, Zubkova NV, Chukanov NV, Van KV, Pushcharovsky DY (2011) Depmeierite, Na8[Al6Si6O24](PO4, CO3)1x3H2O (x < 0.5): a new cancrinite-group mineral species from the Lovozero alkaline pluton of the Kola Peninsula. Geol Ore Depos 53:604–613

    Article  Google Scholar 

  • Petersen H, Robben L, Sehovic M, Gesing TM (2017) Synthesis, temperature-dependent X-ray diffraction and Raman spectroscopic characterization of the sodalite to nosean phase-transformation of Na7.7(1)(MnO4)1.7(2)(H2O)0.8(2)[AlSiO4]6. Microporous Mesoporous Mater 242:144–151

    Article  Google Scholar 

  • Peters L, Vega-Flores G, Depmeier W (2009) Some remarks on substitution effects in sodalities. Prog Solid State Chem 37:243–249

    Article  Google Scholar 

  • Petriček V, Duŝek M, Palatinus L (2014) Crystallographic computing system JANA2006: general features. Z Kristallogr 229(5):345–352

    Google Scholar 

  • Porto SP, Scott JF (1967) Raman spectra of CaWO4, SrWO4, CaMoO4 and SrMoO4. Phys Rev 157(3):716–719

    Article  Google Scholar 

  • Schulz H (1970) Struktur- und Uberstrukturuntersuchungen an Nosean-Einkristallen. Z Kristallogr 131:114–138

    Article  Google Scholar 

  • Schulz H, Saalfeld H (1965) Zur kristallstruktur des noseans, Na8[SO4(Si6Al6O24)]. Tscher Mineral Petrogr Mitteil 10:225–232

    Article  Google Scholar 

  • Shchipalkina NV, Pekov IV, Britvin SN, Koshlyakova NN, Sidorov EG (2020a) Arsenic and phosphorus in feldspar framework: sanidine–filatovite solid-solution series from fumarolic exhalations of the Tolbachik volcano, Kamchatka, Russia. Phys Chem Miner 47(1):1

    Article  Google Scholar 

  • Shchipalkina NV, Pekov IV, Koshlyakova NN, Britvin SN, Zubkova NV, Varlamov DA, Sidorov EG (2020b) Unusual silicate mineralization from fumarolic sublimates of the Tolbachik volcano, Kamchatka, Russia. Part II. Tectosilicates. Eur J Miner 32:121–136

    Article  Google Scholar 

  • Tomisaka T, Eugster H (1968) Synthesis of the sodalite group and subsolidus equilibria in the sodalite-noselite system. Miner J (Japan) 5(4):249–275

    Article  Google Scholar 

  • Zambonini F (1910) Mineralogia Vesuviana. Atti R Ace Sc Fis Mat Ser 2(14/7):1–463

    Google Scholar 

Download references

Acknowledgements

We thank Wulf Depmeier and anonymous reviewer for valuable comments. This work was supported by the Russian Science Foundation, grant no. 19-17-00050. Powder XRD study was carried out with the technical support by the SPbSU X-Ray Diffraction Resource Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadezhda V. Shchipalkina.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shchipalkina, N.V., Zubkova, N.N., Kotelnikov, A.R. et al. Crystal chemistry and Raman spectroscopy of two synthetic sodalite-type aluminosilicates with [MoO4]2− and [WO4]2− groups. Phys Chem Minerals 48, 19 (2021). https://doi.org/10.1007/s00269-021-01144-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00269-021-01144-8

Keywords

Navigation