Skip to main content
Log in

Analytical solutions for surface stress effects on buckling and post-buckling behavior of thin symmetric porous nano-plates resting on elastic foundation

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Due to the high surface-to-bulk ratio, the classical continuum theory cannot accurately describe the mechanical behavior of the nanoscale structures. In this research, based on Gurtin–Murdoch surface stress theory and Kirchhoff plate model, a novel size-dependent formulation is presented for buckling and post-buckling behavior of thin symmetric porous nano-plates embedded into an elastic substrate medium. Using Hamilton’s principle, governing differential equation as well as corresponding boundary conditions is derived for rectangular porous nano-plates. For critical buckling traction and static equilibrium path, analytical solutions are developed including three case studies: simply supported porous nano-plate under biaxial tractions and uniform transverse load, simply-clamped supported porous nano-plate subjected to axial traction and uniform transverse load, and simply supported porous nano-plate under pure shear traction. In the numerical examples, effects of residual stress, surface elasticity, material porosity, and subgrade modulus are investigated for the critical buckling traction and the static equilibrium paths curves. Findings indicate that the residual stress has a significant influence on the buckling traction value and the form of the equilibrium path curve compared to the surface elasticity. Meanwhile, the buckling traction value of the nano-plate rises by reducing the material porosity and increasing the subgrade modulus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data availability statement

All data, models, and code generated or used during the study appear in the submitted article.

References

  1. Lee, H.J., Park, K.K., Kupnik, M., Melosh, N.A., Khuri-Yakub, B.T.: Mesoporous thin-film on highly-sensitive resonant chemical sensor for relative humidity and CO2 detection. Anal. Chem. 84, 3063–3066 (2012). https://doi.org/10.1021/ac300225c

    Article  Google Scholar 

  2. Eom, K., Park, H.S., Yoon, D.S., Kwon, T.: Nanomechanical resonators and their applications in biological/chemical detection: nanomechanics principles. Phys. Rep. 53(4), 115–163 (2011). https://doi.org/10.1016/j.physrep.2011.03.002

    Article  Google Scholar 

  3. Roy, S., Gao, Z.: Nanostructure-based electrical biosensors. Nano Today 4(4), 318–334 (2009). https://doi.org/10.1016/j.nantod.2009.06.003

    Article  Google Scholar 

  4. Gupta, A., Akin, D., Bashir, R.: Detection of bacterial cells and antibodies using surface micromachined thin silicon cantilever resonators. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenomena 22(6), 2785–2791 (2004). https://doi.org/10.1116/1.1824047

    Article  Google Scholar 

  5. Ghaffari, A., Shokuhfar, A., Ghasemi, R.H.: Prefoldin: a nano actuator for carrying the various size nano drugs. J. Comput. Theor. Nanosci. 8(10), 2078–2086 (2011). https://doi.org/10.1166/jctn.2011.1929

    Article  Google Scholar 

  6. Chan, Y.J., Huang, J.-W.: Multiple-point vibration testing with micro-electromechanical accelerometers and micro-controller unit. Mechatronics 44, 84–93 (2017). https://doi.org/10.1016/j.mechatronics.2017.04.006

    Article  Google Scholar 

  7. Ma, W., Huang, T., Guo, S., Yang, C., Ding, Y., Hu, C.: Atomic force microscope study of the aging/rejuvenating effect on asphalt morphology and adhesion performance. Constr. Build. Mater. 205, 642–655 (2019). https://doi.org/10.1016/j.conbuildmat.2019.01.151

    Article  Google Scholar 

  8. Lu, P., He, L.H., Lee, H.P., Lu, C.: Thin plate theory including surface effects. Int. J. Solids Struct. 43, 4631–4647 (2006). https://doi.org/10.1016/j.ijsolstr.2005.07.036

    Article  MATH  Google Scholar 

  9. Gong, B., Chen, Q., Wang, D.: Molecular dynamics study on size-dependent elastic properties of silicon nanoplates. Mater. Lett. 67(1), 165–168 (2012). https://doi.org/10.1016/j.matlet.2011.09.056

    Article  Google Scholar 

  10. Renault, P.O., Villain, P., Coupeau, C., Goudeau, P., Badawi, K.F.: Damage mode tensile testing of thin gold films on polyimide substrates by X-ray diffraction and atomic force microscopy. Thin Solid Films 424(2), 267–273 (2003). https://doi.org/10.1016/S0040-6090(02)01127-6

    Article  Google Scholar 

  11. Zhou, L.G., Huang, H.: Are surfaces elastically softer or stiffer? Appl. Phys. Lett. 84(11), 1940–1942 (2004). https://doi.org/10.1063/1.1682698

    Article  Google Scholar 

  12. Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57(4), 291–323 (1975). https://doi.org/10.1007/BF00261375

    Article  MathSciNet  MATH  Google Scholar 

  13. Gurtin, M.E., Murdoch, A.I.: Addenda to our paper A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 59(4), 389–390 (1975). https://doi.org/10.1007/BF00250426

    Article  MATH  Google Scholar 

  14. Gurtin, M.E., Murdoch, A.I.: Surface stress in solids. Int. J. Solids Struct. 14(6), 431–440 (1978). https://doi.org/10.1016/0020-7683(78)90008-2

    Article  MATH  Google Scholar 

  15. Cortes, H.J., Pfeiffer, C.D., Richter, B.E., Stevens, T.S.: Porous ceramic bed supports for fused silica packed capillary columns used in liquid chromatography. J. High Resolut. Chromatogr. 10(8), 446–448 (1987). https://doi.org/10.1002/jhrc.1240100805

    Article  Google Scholar 

  16. Kresge, C.T., Leonowicz, M.E., Roth, W.J., Vartuli, J.C., Beck, J.S.: Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359(6397), 710–712 (1992). https://doi.org/10.1038/359710a0

    Article  Google Scholar 

  17. Velev, O.D., Jede, T.A., Lobo, R.F., Lenhoff, A.M.: Porous silica via colloidal crystallization. Nature 389(6650), 447–448 (1997). https://doi.org/10.1038/38921

    Article  Google Scholar 

  18. Beck, J.S., et al.: A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 114(27), 10834–10843 (1992). https://doi.org/10.1021/ja00053a020

    Article  Google Scholar 

  19. Gimon-Kinsel, M.E., Balkus, K.J., Jr.: Pulsed laser deposition of mesoporous niobium oxide thin films and application as chemical sensors. Microporous Mesoporous Mater. 28(1), 113–123 (1999). https://doi.org/10.1016/S1387-1811(98)00291-1

    Article  Google Scholar 

  20. Duan, K., Li, L., Hu, Y., Wang, X.: Pillared graphene as an ultra-high sensitivity mass sensor. Sci. Rep. 7(1), 1–8 (2017). https://doi.org/10.1038/s41598-017-14182-6

    Article  Google Scholar 

  21. Lefebvre, L., Banhart, J., Dunand, D.C.: Porous metals and metallic foams: current status and recent developments. Adv. Eng. Mater. 10(9), 775–787 (2008). https://doi.org/10.1002/adem.200800241

    Article  Google Scholar 

  22. Betts, C.: Benefits of metal foams and developments in modelling techniques to assess their materials behaviour: a review. Mater. Sci. Technol. 28(2), 129–143 (2012). https://doi.org/10.1179/026708311X13135950699290

    Article  Google Scholar 

  23. Zhao, C.Y.: Review on thermal transport in high porosity cellular metal foams with open cells. Int. J. Heat Mass Transf. 55(13–14), 3618–3632 (2012). https://doi.org/10.1016/j.ijheatmasstransfer.2012.03.017

    Article  Google Scholar 

  24. Smith, B.H., Szyniszewski, S., Hajjar, J.F., Schafer, B.W., Arwade, S.R.: Steel foam for structures: a review of applications, manufacturing and material properties. J. Constr. Steel Res. 71, 1–10 (2012). https://doi.org/10.1016/j.jcsr.2011.10.028

    Article  Google Scholar 

  25. Chandratre, S., Sharma: Coaxing graphene to be piezoelectric. Appl. Phys. Lett. 100(2), 023114 (2012). https://doi.org/10.1063/1.3676084

    Article  Google Scholar 

  26. Winkler, E.: Die Lehre von der Elasticitaet und Festigkeit: mit besonderer Rücksicht auf ihre Anwendung in der Technik für polytechnische Schulen, Bauakademien, Ingenieue. Architecten, etc. Dominicus, Maschinenbauer (1867)

    Google Scholar 

  27. Lim, C.W., He, L.H.: Size-dependent nonlinear response of thin elastic films with nano-scale thickness. Int. J. Mech. Sci. 46, 1715–1726 (2004). https://doi.org/10.1016/j.ijmecsci.2004.09.003

    Article  MATH  Google Scholar 

  28. Shaat, M., Mahmoud, F.F., Gao, X.-L., Faheem, A.F.: Size-dependent bending analysis of Kirchhoff nano-plates based on a modified couple-stress theory including surface effects. Int. J. Mech. Sci. 79, 31–37 (2014). https://doi.org/10.1016/j.ijmecsci.2013.11.022

    Article  Google Scholar 

  29. Assadi, A.: Size dependent forced vibration of nanoplates with consideration of surface effects. Appl. Math. Model. 37(5), 3575–3588 (2013). https://doi.org/10.1016/j.apm.2012.07.049

    Article  MathSciNet  MATH  Google Scholar 

  30. Gholamí, R., Shojaei, M.F., Mohammadi, V., Sahmani, S.: Surface stress effect on the vibrational response of circular nanopiates with various edge supports. J. Appl. Mech. 80(2), 1–8 (2013). https://doi.org/10.1115/1.4007255

    Article  Google Scholar 

  31. Khorshidi, K., Fallah, A.: Buckling analysis of functionally graded rectangular nano-plate based on nonlocal exponential shear deformation theory. Int. J. Mech. Sci. 113, 94–104 (2016). https://doi.org/10.1016/j.ijmecsci.2016.04.014

    Article  Google Scholar 

  32. Ke, L.-L., Yang, J., Kitipornchai, S., Wang, Y.-S.: Axisymmetric postbuckling analysis of size-dependent functionally graded annular microplates using the physical neutral plane. Int. J. Eng. Sci. 81, 66–81 (2014). https://doi.org/10.1016/j.ijengsci.2014.04.005

    Article  MathSciNet  MATH  Google Scholar 

  33. Akgöz, B., Civalek, Ö.: Thermo-mechanical buckling behavior of functionally graded microbeams embedded in elastic medium. Int. J. Eng. Sci. 85, 90–104 (2014). https://doi.org/10.1016/j.ijengsci.2014.08.011

    Article  Google Scholar 

  34. Mohammadabadi, M., Daneshmehr, A.R., Homayounfard, M.: Size-dependent thermal buckling analysis of micro composite laminated beams using modified couple stress theory. Int. J. Eng. Sci. 92, 47–62 (2015). https://doi.org/10.1016/j.ijengsci.2015.03.005

    Article  MathSciNet  MATH  Google Scholar 

  35. Arshid, E., Amir, S., Loghman, A.: Static and dynamic analyses of FG-GNPs reinforced porous nanocomposite annular micro-plates based on MSGT. Int. J. Mech. Sci. 180, 105656 (2020). https://doi.org/10.1016/j.ijmecsci.2020.105656

    Article  Google Scholar 

  36. Kim, J., Żur, K.K., Reddy, J.N.: Bending, free vibration, and buckling of modified couples stress-based functionally graded porous micro-plates. Compos. Struct. 209, 879–888 (2019). https://doi.org/10.1016/j.compstruct.2018.11.023

    Article  Google Scholar 

  37. Sahmani, S., Aghdam, M.M., Rabczuk, T.: Nonlocal strain gradient plate model for nonlinear large-amplitude vibrations of functionally graded porous micro/nano-plates reinforced with GPLs. Compos. Struct. 198, 51–62 (2018). https://doi.org/10.1016/j.compstruct.2018.05.031

    Article  Google Scholar 

  38. Babaei, H., Reza Eslami, M.: Size-dependent vibrations of thermally pre/post-buckled FG porous micro-tubes based on modified couple stress theory. Int. J. Mech. Sci. 180, 105694 (2020). https://doi.org/10.1016/j.ijmecsci.2020.105694

    Article  Google Scholar 

  39. Rezaiee-Pajand, M., Kamali, F.: Exact solution for thermal–mechanical post-buckling of functionally graded micro-beams. CEAS Aeronaut. J. 12, 85–100 (2021). https://doi.org/10.1007/s13272-020-00480-9

    Article  Google Scholar 

  40. Naderi, A., Saidi, A.R.: Nonlocal postbuckling analysis of graphene sheets in a nonlinear polymer medium. Int. J. Eng. Sci. 81, 49–65 (2014). https://doi.org/10.1016/j.ijengsci.2014.04.004

    Article  Google Scholar 

  41. Bodaghi, M., Saidi, A.R.: Stability analysis of functionally graded rectangular plates under nonlinearly varying in-plane loading resting on elastic foundation. Arch. Appl. Mech. 81(6), 765–780 (2011). https://doi.org/10.1007/s00419-010-0449-0

    Article  MATH  Google Scholar 

  42. Mohammadi, M., Saidi, A.R., Jomehzadeh, E.: Levy solution for buckling analysis of functionally graded rectangular plates. Appl. Compos. Mater. 17(2), 81–93 (2010). https://doi.org/10.1007/s10443-009-9100-z

    Article  Google Scholar 

  43. Naderi, A., Saidi, A.R.: Modified nonlocal mindlin plate theory for buckling analysis of nanoplates. J. Nanomech. Micromech. 4(4), A4013015 (2014). https://doi.org/10.1061/(ASCE)NM.2153-5477.0000068

    Article  Google Scholar 

  44. Kamali, M., Shamsi, M., Saidi, A.R.: Surface effect on buckling of microtubules in living cells using first-order shear deformation shell theory and standard linear solid model. Mech. Res. Commun. 92, 111–117 (2018). https://doi.org/10.1016/j.mechrescom.2018.08.011

    Article  Google Scholar 

  45. Ugural, A.C.: Stresses in Beams, Plates, and Shells. CRC Press, London (2009)

    Book  Google Scholar 

  46. Fu, Y., Zhang, J.: Size-dependent pull-in phenomena in electrically actuated nanobeams incorporating surface energies. Appl. Math. Model. 35(2), 941–951 (2011). https://doi.org/10.1016/j.apm.2010.07.051

    Article  MathSciNet  Google Scholar 

  47. Cuenot, S., Frétigny, C., Demoustier-Champagne, S., Nysten, B.: Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Phys. Rev. B 69(16), 165410 (2004). https://doi.org/10.1103/PhysRevB.69.165410

    Article  Google Scholar 

  48. Ging, G.Y., Duan, H.L., Sun, X.M., Zhang, Z.S., Xu, J., Li, Y.D., Wang, J.X., Yu, D.P.: Surface effects on elastic properties of silver nanowires: contact atomic-force microscopy. Phys. Rev. B 73(23), 235409 (2006). https://doi.org/10.1103/PhysRevB.73.235409

    Article  Google Scholar 

  49. Tan, E.P., Zhu, Y., Yu, T., Dai, L., Sow, C.H., Tan, V.B.C., Lim, C.T.: Crystallinity and surface effects on Young’s modulus of CuO nanowires. Appl. Phys. Lett. 90(16), 163112 (2007). https://doi.org/10.1063/1.2723654

    Article  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzad Shahabian.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamali, F., Shahabian, F. Analytical solutions for surface stress effects on buckling and post-buckling behavior of thin symmetric porous nano-plates resting on elastic foundation. Arch Appl Mech 91, 2853–2880 (2021). https://doi.org/10.1007/s00419-021-01938-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-021-01938-w

Keywords

Navigation