Skip to main content
Log in

Pressure Effects on Stopping Power of Alpha Particles in Argon Gas

  • PHYSICS OF ELEMENTARY PARTICLES AND ATOMIC NUCLEI. THEORY
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

This paper aims to evaluate the range and stopping power of alpha particles in argon gas at different pressure of 0 to 1 bar, using the alpha radiation energy. The results show that the energy of the passed alpha particles has been decreased with increasing pressure in a small vacuum chamber. It is also observed that the amount of alpha particles reaching the detector follows a decreasing behavior as the distance increases. Experimental, SRIM and theoretical results for range and stopping power are closely in a good agreement. The errors in the measured range and stopping power data results from random. Only random errors have been considered in the present analysis and were estimated from pressure measurements and the uncertainty of the gas temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. S. Kumar and P. Diwan, “Energy loss and straggling of α-particles in Ag and Sn metallic foils,” J. Radiat. Res. Appl. Sci. 8, 538–543 (2015).

    Article  Google Scholar 

  2. D. C. Yost and Y. Kanai, “Electronic stopping for protons and α particles from first-principles electron dynamics: The case of silicon carbide,” Phys. Rev. B 94, 115107 (2016).

    Article  ADS  Google Scholar 

  3. M. Q. Hiwa, “Stopping power of alpha particles in helium gas,” Herald of the Bauman Moscow State Technical University, Series Natural Sciences, No. 2, 117–125 (2020). https://doi.org/10.18698/1812-3368-2020-2-117-125

    Article  Google Scholar 

  4. H. Nikjoo, S. Uehara, D. Emfietzoglou, and F. Cucinotta, “Track-structure codes in radiation research,” Rad. Meas. 41, 1052–1074 (2006).

    Article  Google Scholar 

  5. A. M. Hamad, and H. M. Qadr, “Gamma-rays spectroscopy by using a thallium activated sodium iodide NaI (Ti),” Euras. J. Sci. Eng. 4, 99–111 (2018). https://doi.org/10.23918/eajse.v4i1sip99

    Article  Google Scholar 

  6. H. M. Qadr, “Calculation for gamma ray buildup factor for aluminium, graphite and lead,” Int. J. Nucl. Energy Sci. Technol. 13, 61–69 (2019).

    Article  Google Scholar 

  7. H. M. Qadr and A. M. Hamad, “Mechanical properties of ferritic martenstic steels: A review,” Sci. Bull. Valahia Univ.: Mater. Mech. 17, 18–27 (2019). https://doi.org/10.2478/bsmm-2019-0003

    Google Scholar 

  8. H. M. J. Al-Ta’ii, Y. M. Amin, and V. Periasamy, “Investigations of electrical properties of structures Al-DNA-ITO-Al exposed to alpha particles,” Rad. Meas. 72, 85–94 (2015).

    Article  Google Scholar 

  9. C. C. Raju, “Energy levels of helium nucleus,” J. Mod. Phys. 4, 459–462 (2013).

    Article  Google Scholar 

  10. M. Gauthier, C. Blancard, S. Chen, B. Siberchicot, M. Torrent, G. Faussurier, and J. Fuchs, “Stopping power modeling in warm and hot dense matter,” High Energy Density Phys. 9, 488–495 (2013).

    Article  ADS  Google Scholar 

  11. T. Hoang, A. Lazarian, B. Burkhart, and A. Loeb, “The interaction of relativistic spacecrafts with the interstellar medium,” Astrophys. J. 837, 5 (2017).

    Article  ADS  Google Scholar 

  12. F. M. H. Taghreed Abdull Jabbr Younis, “Calculation of the stopping power of alpha particles and its range in bone tissue,” Int. J. Res. - Granthaalayah 7, 315–320 (2019).

    Article  Google Scholar 

  13. V. Kanike, J. Meesungnoen, and J.-P. Jay-Gerin, “Acid spike effect in spurs/tracks of the low/high linear energy transfer radiolysis of water: Potential implications for radiobiology,” RSC Adv. 5, 43361–43370 (2015).

    Article  ADS  Google Scholar 

  14. R. M. Souza, R. Costa-Felix, and A. V. Alvarenga, “Attenuation coefficient variation as a function of temperature in a cortical bone phantom,” in Proceedings of the 26th Brazilian Congress on Biomedical Engineering (Springer, 2019), pp. 807–810.

  15. A. Lühr, J. Toftegaard, I. Kantemiris, D. C. Hansen, and N. Bassler, “Stopping power for particle therapy: The generic library LibdEdx and clinically relevant stopping-power ratios for light ions,” Int. J. Radiat. Biol. 88, 209–212 (2012).

    Article  Google Scholar 

  16. E. Kavaz, H. Tekin, O. Agar, E. Altunsoy, O. Kilicoglu, M. Kamislioglu, M. Abuzaid, and M. Sayyed, “The mass stopping power/projected range and nuclear shielding behaviors of barium bismuth borate glasses and influence of cerium oxide,” Ceram. Int. 45, 15348–15357 (2019).

    Article  Google Scholar 

  17. M. Hiwa and M. Ari, “Investigation of long and short term irradiation hardening of P91 and P92 ferritic/martensitic steels,” Problems of Atomic Science and Technology. Series: Thermonuclear Fusion 42, 81–88 (2019). https://doi.org/10.21517/0202-3822-2019-42-2-81-88

    Google Scholar 

  18. H. Qadr, “Effect of ion irradiation on the hardness properties of zirconium alloy,” Ann. Univ. Craiova, Phys. 29, 68–76 (2019).

    Google Scholar 

  19. H. Qadr, “Effect of ion irradiation on the mechanical properties of high and low copper,” Atom Indonesia. 46, 47–51 (2020).

    Article  Google Scholar 

  20. K. H. Tahier, “Dosimetric comparison and complication risk of estimation for photon and proton therapy of pediatric tumors,” Thesis (Univ. Bergen, 2019).

  21. D. E. Groom, N. V. Mokhov, and S. I. Striganov, “Muon stopping power and range tables 10 MeV–100 TeV,” At. Data Nucl. Data Tables 78, 183–356 (2001).

    Article  ADS  Google Scholar 

  22. M. Yang, X. R. Zhu, P. C. Park, U. Titt, R. Mohan, G. Virshup, J. E. Clayton, and L. Dong, “Comprehensive analysis of proton range uncertainties related to patient stopping-power-ratio estimation using the stoichiometric calibration,” Phys. Med. Biol. 57, 4095 (2012).

    Article  Google Scholar 

  23. S. Malko, W. Cayzac, V. Ospina, X. Vaisseau, J. Apinaniz, D. Batani, M. Barriga-Carrasco, R. Fedosejevs, M. Huault, and P. Neumayer, “Stopping power measurements of ions in a moderately coupled and degenerate plasma,” Bull. Am. Phys. Soc. 64, (2019).

  24. M. Usta and M. C. Tufan, “Stopping power and range calculations in human tissues by using the hartree-fock-roothaan wave functions,” Rad. Phys. Chem. 140, 43–50 (2017).

    Article  ADS  Google Scholar 

  25. W. Cayzac, A. Frank, A. Ortner, V. Bagnoud, M. Basko, S. Bedacht, C. Blaser, A. Blazevic, S. Busold, and O. Deppert, “Experimental discrimination of ion stopping models near the Bragg peak in highly ionized matter,” Nat. Commun. 8, 1–7 (2017).

    Article  Google Scholar 

  26. F. Carvalho and J. Oliveira, “Alpha emitters from uranium mining in the environment,” J. Radioanal. Nucl. Chem. 274, 167–174 (2007).

    Article  Google Scholar 

  27. H. M. Qadr, “Comparison of energy resolution and efficiency of NaI (TI) and HPGe detector using gamma-ray spectroscopy,” J. Phys. Chem. Funct. Mater. 3, 24–27 (2020).

    Google Scholar 

  28. Q. Mohammad and H. Maghdid, “Alpha-particle stopping powers in air and argon,” J. Pure Appl. Phys. 5, 22–28 (2017).

    Google Scholar 

  29. M. Zadro, A. Di Pietro, P. Figuera, M. Fisichella, M. Lattuada, A. Maggio, F. Pansini, M. Papa, V. Scuderi, and O. Y. Goryunov, “Stopping power of helium gas for 9Be ions from 2 to 31 MeV,” Nucl. Instrum. Methods Phys. Res., Sect. B 259, 836–840 (2007).

    Google Scholar 

  30. "Stopping powers and ranges for protons and alpha particles," Tech. Report No. ICRU-49 (Int. Commission on Radiation Units and Meas., Bethesda, MD, 1993).

  31. L. C. Northcliffe, and R. F. Schilling, “Range and stopping-power tables for heavy ions,” At. Data Nucl. Data Tables 7, 233–463 (1970).

    Article  ADS  Google Scholar 

  32. J. Ziegler, J. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, New York, 1985), Vol. 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. M. Qadr.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qadr, H.M. Pressure Effects on Stopping Power of Alpha Particles in Argon Gas. Phys. Part. Nuclei Lett. 18, 185–189 (2021). https://doi.org/10.1134/S1547477121020151

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477121020151

Keywords:

Navigation