Skip to main content
Log in

Impact of Chronic Oral Administration of Silver Nanoparticles on Cognitive Abilities of Mice

  • RADIOBIOLOGY, ECOLOGY AND NUCLEAR MEDICINE
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

To assess the effect of silver nanoparticles on mice cognitive abilities, daily, up to 4-month period, experimental mice were administrated with silver nanoparticles solution. Accumulation of silver in brain was assessed by neutron activation analysis. Cognitive abilities in mice before and after silver nanoparticles administration were evaluated in the Morris water maze behavioral test. No significant differences in the amounts of silver accumulated in brain were found between capable and incapable animals. Silver accumulation in brain of experimental animals in 4-months experiment was higher than in 2-months experiment for both groups. In the main Morris water maze behavioral test at the control points of 2 and 4 months no statistically significant differences were found in the parameters of treks between experimental and control animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. J. Tang, L. Xiong, S. Wang, J. Wang, L. Liu, J. Li, Z. Wan, and T. Xi, “Influence of silver nanoparticles on neurons and blood-brain barrier via subcutaneous injection in rats,” Appl. Surf. Sci. 255, 502–504 (2008).

    Article  ADS  Google Scholar 

  2. I. van Rooy, S. Cakir-Tascioglu, W. E. Hennink, G. Storm, R. M. Schiffelers, and E. Mastrobattista, “In vivo methods to study uptake of nanoparticles into the brain,” Pharm. Res. 28, 456–471 (2011).

    Article  Google Scholar 

  3. A. Sharma, D. F. Muresanu, R. Patnaik, and H. S. Sharma, “Size- and age-dependent neurotoxicity of engineered metal nanoparticles in rats,” Mol. Neurobiol. 48, 386–396 (2013).

    Article  Google Scholar 

  4. M. Shilo, A. Sharon, K. Baranes, M. Motiei, J. P. M. Lellouche, and R. Popovtzer, “The effect of nanoparticle size on the probability to cross the blood-brain barrier: An in-vitro endothelial cell model,” J. Nanobiotechnol. 13, 19 (2015).

    Article  Google Scholar 

  5. A. Nel, T. Xia, L. Madler, and N. Li, “Toxic potential of materials at the nanolevel,” Science (Washington, DC, U. S.) 311, 622–627 (2006).

    Article  ADS  Google Scholar 

  6. P. A. Schulte, M. K. Schubauer-Berigan, C. Mayweather, C. L. Geraci, R. Zumwalde, and J. L. McKernan, “Issues in the development of epidemiologic studies of workers exposed to engineered nanoparticles,” J. Occup. Environ. Med. 51, 323–335 (2009).

    Article  Google Scholar 

  7. P. I. Dolez and M. Debia, “Overview of workplace exposure to nanomaterials,” in Nanoengineering: Global Approaches to Health and Safety Issues, Ed. by P. I. Dolez (Elsevier, Waltham, MA, 2015), pp. 427–689.

    Google Scholar 

  8. A. A. Antsiferova, Y. P. Buzulukov, V. A. Demin, V. F. Demin, D. A. Rogatkin, E. N. Petritskaya, L. F. Abaeva, and P. K. Kashkarov, “Radiotracer methods and neutron activation analysis for the investigation of nanoparticle biokinetics in living organisms,” Nanotechnol. Russ. 10, 100–108 (2015).

    Article  Google Scholar 

  9. Y. Song, X. Li, and X. Du, “Exposure to nanoparticles is related to pleural effusion, pulmonary fibrosis and granuloma,” Eur. Respir. J. 34, 559–567 (2009).

    Article  Google Scholar 

  10. Y. Song, X. Li, L. Wang, Y. Rojanasakul, V. Castranova, H. Li, and J. Ma, “Nanomaterials in humans: Identification, characteristics, and potential damage,” Toxicol. Pathol. 39, 841–849 (2011).

    Article  Google Scholar 

  11. H. S. Sharma and A. Sharma, “Nanoparticles aggravate heat stress induced cognitive deficits, blood-brain barrier disruption, edema formation and brain pathology,” Prog. Brain Res. 162, 245–273 (2007).

    Article  Google Scholar 

  12. H. Shanker Sharma and A. Sharma, “Neurotoxicity of engineered nanoparticles from metals,” CNS Neurol. Disord. Drug Targets 11, 65–80 (2012).

    Article  Google Scholar 

  13. P. Liu, Z. Huang, and N. Gu, “Exposure to silver nanoparticles does not affect cognitive outcome or hippocampal neurogenesis in adult mice,” Ecotoxic. Environ. Safe 87, 124–130 (2013).

    Article  Google Scholar 

  14. S. Amara, I. Ben-Slama, I. Mrad, N. Rihane, M. Jeljeli, L. El-Mir, K. Ben-Rhouma, W. Rachidi, M. Seve, H. Abdelmelek, and M. Sakly, “Acute exposure to zinc oxide nanoparticles does not affect the cognitive capacity and neurotransmitters levels in adult rats,” Nanotoxicology 8 (S1), 208–215 (2014).

    Article  Google Scholar 

  15. S. Temizel-Sekeryan and A. L. Hicks, “Global environmental impacts of silver nanoparticle production methods supported by life cycle assessment,” Resour. Conserv. Recycl. 156, 104676 (2020).

    Article  Google Scholar 

  16. N. Z. Janković and D. L. Plata, “Engineered nanomaterials in the context of global element cycles,” Environ. Sci. Nano 6, 2697–711 (2019).

    Article  Google Scholar 

  17. A. A. Antsiferova, Y. P. Buzulukov, V. A. Demin, P. K. Kashkarov, M. Kovalchuk, and E. N. Petritskaya, “Extremely low level of Ag nanoparticle excretion from mice brain in in vitro experiments,” Mater. Sci. Eng. 98 (2015).

  18. V. A. Demin, V. F. Demin, Y. P. Buzulukov, P. K. Kashkarov, and A. D. Levin, “Formation of certified reference materials and standard measurement guides for development of traceable measurements of mass fractions and sizes of nanoparticles in different media and biological matrixes on the basis of gamma-ray and optical spectroscopy,” Nanotechnol. Russ. 8, 347–356 (2013).

    Article  Google Scholar 

  19. S. P. Kombarova, D. V. Bagrov, M. A. Petrosyan, G. H. Tolibova, A. V. Feofanov, and K. V. Shaitan, “About the influence of silver nanoparticles on living organisms physiology,” Clin. Pharmacol. Ther. 14 (4), 42–51 (2016).

    Google Scholar 

  20. “On the norms of feeding of laboratory animals and producers,” Order of the Ministry of Health of the USSR No. 163 of March 10, 1966. http://www.libussr.ru/doc_ussr/usr_6382.htm. Accessed January 5, 2014.

  21. M. V. Frontasyeva, “Neutron activation analysis for the life sciences. A review,” Phys. Part. Nucl. 42, 332–378 (2011).

    Article  Google Scholar 

  22. S. S. Pavlov, A. Y. Dmitriev, and M. V. Frontasyeva, “Automation system for neutron activation analysis at the reactor IBR-2, Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia,” J. Radioanal. Nucl. Chem. 309, 27–38 (2016).

    Article  Google Scholar 

  23. R. Morris, “Development of a water maze procedure for studying spatial learning in the rat,” J. Neurosci. Methods 11, 47–60 (1984).

    Article  Google Scholar 

  24. A. Garthe, J. Behr, and G. Kempermann, “Adult-generated hippocampal neurons allow the flexible use of spatially precise learning strategies,” PLoS One 4, e5464 (2009).

    Article  ADS  Google Scholar 

  25. Y. S. Kim, M. Y. Song, J. D. Park, K. S. Song, H. R. Ryu, Y. H. Chung, H. K. Chang, J. H. Lee, K. H. Oh, B. J. Kelman, I. K. Hwang, and I. J. Yu, “Subchronic oral toxicity of silver nanoparticles,” Part. Fiber Toxicol. 7 (20), 1 (2010).

    Article  Google Scholar 

  26. M. Charehsaz, K. S. Hougaard, H. Sipahi, A. I. D. Ekici, Ç. Kaspar, M. Culha, Ü. Ündeğer Bucurgat, and A. Aydin, “Effects of developmental exposure to silver in ionic and nanoparticle form: A study in rats,” DARU 24, 24 (2016).

    Article  Google Scholar 

  27. L. Böhmert, M. Girod, U. Hansen, R. Maul, P. Knappe, B. Niemann, S. M. Weidner, A. F. Thünemann, and A. Lampen, “Analytically monitored digestion of silver nanoparticles and their toxicity on human intestinal cells,” Nanotoxicology 8, 631–642 (2014).

    Article  Google Scholar 

  28. J. Liu, Z. Wang, F. D. Liu, A. B. Kane, and R. H. Hurt, “Chemical transformations of nanosilver in biological environments,” ACS Nano 6, 9887–9899 (2012).

    Article  Google Scholar 

  29. C. Kästner, D. Lichtenstein, A. Lampen, and A. F. Thünemann, “Monitoring the fate of small silver nanoparticles during artificial digestion,” Colloids Surf. A 525, 76–81 (2017).

    Article  Google Scholar 

  30. P. Rajanahalli, C. J. Stucke, and Y. Hong, “The effects of silver nanoparticles on mouse embryonic stemcell self-renewal and proliferation,” Toxicol. Rep., 758–764 (2015).

  31. X. Wang, T. Li, X. Su, J. Li, W. Li, J. Gan, T. Wu, L. Kong, T. Zhang, M. Tang, and Y. Xue, “Genotoxic effects of silver nanoparticles with/without coating in human liver HepG2 cells and in mice,” J. Appl. Toxicol., 1–11 (2019).

  32. L. Li, J. Ding, C. Marshall, J. Gao, G. Hua, and M. Xiao, “Pretraining affects Morris water maze performance with different patterns between control and ovariectomized plus d-galactose-injected mice,” Behav. Brain Res. 217, 244–247 (2011).

    Article  Google Scholar 

  33. Y. Li, C. Zhang, and T. Song, “Disturbance of the magnetic field did not affect spatial memory,” Physiol. Res. 63, 377–385 (2014).

    Article  Google Scholar 

  34. A. L. Ivlieva, E. N. Petritskaya, D. A. Rogatkin, and V. A. Demin, “Methodological characteristics of the use of the morris water maze for assessment of cognitive functions in animals,” Neurosci. Behav. Phys. 47, 484–493 (2017).

    Article  Google Scholar 

  35. J. Rogers, L. Churilov, A. J. Hannan, and T. Renoir, “Search strategy selection in the morris water maze indicates allocentric map formation during learning that underpins spatial memory formation,” Neurobiol. Learn. Mem. 139, 37–49 (2017).

    Article  Google Scholar 

  36. J. Gunstad, R. Paul, R. Cohen, D. Tate, M. B. Spitznagel, and S. Grieve, “Relationship between body mass index and brain volume in healthy adults,” Int. J. Neurosci. 118, 1582–1593 (2008).

    Article  Google Scholar 

  37. J. Xu, Y. Li, H. Lin, R. Sinha, and M. Potenza, “Body mass index correlates negatively with white matter integrity in the fornix and corpus callosum: A diffusion tensor imaging study,” Hum. Brain Mapp. 34, 1044–1052 (2013).

    Article  Google Scholar 

  38. B. Y. Ryzhavskii and E. M. Litvintseva, “Interrelation of total and relative brain mass and body mass in rats,” Dal’nevost. Med. Zh. 2, 84–87 (2015).

    Google Scholar 

  39. N. V. Markina, O. V. Perepelkina, I. L. Plekhanova, E. G. Markova, A. V. Revishchin, and I. I. Poletaeva, “Behavioral and morphological asymmetry in brain weight selected mice,” Zh. Vyssh. Nervn. Deyat. Pavlova 53, 176–183 (2003).

    Google Scholar 

  40. O. V. Perepelkina, V. A. Golibrodo, I. G. Lilp, and I. I. Poletaeva, “Mice selected for large and small brain weight: The preservation of trait differences after the selection was discontinued,” Adv. Biosci. Biotechnol. 4, 1–8 (2013).

    Article  Google Scholar 

  41. O. V. Perepelkina, I. G. Lilp, A. Y. Tarasova, V. A. Golibrodo, and I. I. Poletaeva, “Changes in cognitive abilities of laboratory mice as a result of artificial selection,” Russ. J. Cognit. Sci. 2, 29–35 (2015).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to Dr. Richard B. Hoover for his suggestions that improved the manuscript.

Funding

This work was supported by the Russian Foundation for Basic Research grant no. 15-32-20429 mol_a_ved.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Zinicovscaia.

Ethics declarations

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivlieva, A.L., Petritskaya, E.N., Rogatkin, D.A. et al. Impact of Chronic Oral Administration of Silver Nanoparticles on Cognitive Abilities of Mice. Phys. Part. Nuclei Lett. 18, 250–265 (2021). https://doi.org/10.1134/S1547477121020072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477121020072

Navigation