Skip to main content
Log in

A Simple Model Approach to Dilepton Production Rate in Relativistic Heavy Ion Collisions

  • PHYSICS OF ELEMENTARY PARTICLES AND ATOMIC NUCLEI. THEORY
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

We compute the dilepton production rate from deconfined phase of quark-gluon plasma using the quasi-particle model (QPM). The computation is based on an extension of our previous work. In this model, the finite quark mass is replaced by the effective quark mass which is considered as the sum of square of current mass, coupling of thermal and current mass and square of thermal mass. This leads to the modest enhancement in the dilepton production rate. The results indicate that the emission rate is also an increasing function of chemical potential. The study implies that the model results are significantly enhanced with the effective quark mass as compared to thermal quark mass in the low mass region and not altered in the intermediate mass region. So the model using the effective quark mass fits well in the production of dilepton rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. H. Stocker and W. Greiner, Phys. Rep. 137, 277 (1986).

    Article  ADS  Google Scholar 

  2. P. Danielewicz, R. Lacey, and W. G. Lynch, Science (Washington, DC, U. S.) 298, 1592 (2002).

    Article  ADS  Google Scholar 

  3. J. W. Harris and B. M. Müller, Ann. Rev. Nucl. Par. Sci. 46, 71 (1996).

    Article  ADS  Google Scholar 

  4. S. Nagamiya, Nucl. Phys. A 544, 5c (1992).

    Article  ADS  Google Scholar 

  5. W. Busza, Nucl. Phys. A 418, 635c (1984).

    Article  ADS  Google Scholar 

  6. O. Hansen, in Proceedings of the 20th International Workshop on Gross Production of Nuclei and Nuclear Excitations, Hirschegg, Austria, Ed. by H. Ferdmeier (1992).

  7. J. Rafelski, B. Müller, Phys. Rev. Lett. 48, 1066 (1982).

    Article  ADS  Google Scholar 

  8. T. Matsui and H. Satz, Phys. Lett. B 178, 416 (1986).

    Article  ADS  Google Scholar 

  9. E. Shuryak, Phys. Rep. 61, 71 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  10. K. Kajantie, J. Kapusta, L. McLerran, and A. Mekjian, Phys. Rev. D 34, 2746 (1986).

    Article  ADS  Google Scholar 

  11. S. Y. Wang and D. Boyanovsky, Phys. Rev. D 63, 051702 (2001).

    Article  ADS  Google Scholar 

  12. Y. Kumar and P. Jain, Int. J. Mod. Phys. A 30, 1550196 (2015).

    Article  ADS  Google Scholar 

  13. J. Alam, S. Raha, and B. Sinha, Phys. Rep. 273, 243 (1996).

    Article  ADS  Google Scholar 

  14. A. Bialas and W. Czy, Phys. Rev. D 30, 2371 (1984).

    Article  ADS  Google Scholar 

  15. G. Gustafson, in Proceedings of the Workshop on Relativistic Heavy-Ion Physics at Present and Future Accelerators, Budapest, 1992.

  16. H. J. Mohring and J. Ranft, Z. Phys. C 52, 643 (1991).

    Article  ADS  Google Scholar 

  17. N. Hammon, Phys. Rev. C 61, 014901 (1999).

    Article  ADS  Google Scholar 

  18. A. Dumitru, D. H. Rischke, Th. Schönfeld, L. Winckelmann, H. Stöcker, and W. Greiner, Phys. Rev. Lett. 70, 2860 (1993).

    Article  ADS  Google Scholar 

  19. M. Strickland, Phys. Lett. B 331, 245 (1994).

    Article  ADS  Google Scholar 

  20. A. Peshier, B. Kämpfer, O. P. Pavlenko, and G. Soff, Phys. Lett. B 337, 235 (1994).

    Article  ADS  Google Scholar 

  21. Y. Kumar and S. S. Singh, Can. J. Phys. 90, 955 (2012).

    Article  ADS  Google Scholar 

  22. A. Majumder, Phys. Rev. D 63, 114008 (2001).

    Article  ADS  Google Scholar 

  23. S. A. Bass, B. Müller, and D. K. Srivastava, Phys. Rev. Lett. 91, 052302 (2003).

    Article  ADS  Google Scholar 

  24. C. A. Islam, S. Majumder, N. Haque and M. G. Mustafa, J. High Energy Phys., No. 02, 011 (2015).

  25. Y. Hidaka, S. Lin, R. D. Pisarski and D. Satow, J. High Energy Phys., No. 10, 005 (2015).

  26. C. A. Islam, S. Majumder, and M. G. Mustafa, Phys. Rev. D 92, 096002 (2015).

    Article  ADS  Google Scholar 

  27. R. K. Pathria, Statistical Mechanics, 2nd ed. (Butterworth Heinemann, Oxford, 1997).

    MATH  Google Scholar 

  28. K. Huang, Statistical Mechanics, 2nd ed. (Wiley, New York, 1987).

    MATH  Google Scholar 

  29. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 9: Statistical Physics, Part 2 (Nauka, Moscow, 1978; Pergamon, New York, 1980).

  30. P. K. Srivastava, S. K. Tiwari, and C. P. Singh, Phys. Rev. D 82, 014023 (2010).

    Article  ADS  Google Scholar 

  31. R. Rapp, Phys. Rev. C 63, 054907 (2001).

    Article  ADS  Google Scholar 

  32. K. Dusling and I. Zahed, Phys. Rev. C 82, 054909 (2010).

    Article  ADS  Google Scholar 

  33. P. Jaikumar, R. Rapp and I. Zahed, Phys. Rev. C 65, 055205 (2002).

    Article  ADS  Google Scholar 

  34. J. Deng, Q. Wang, N. Xu and P. Zhuang, Phys. Lett. B 701, 581 (2011).

    Article  ADS  Google Scholar 

  35. R. Rapp, H. V. Hees and T. Strong, Braz. J. Phys. 37, 779 (2007).

    Article  ADS  Google Scholar 

  36. K. Fialkaowski, Braz. J. Phys. 37, 788 (2007).

    Article  ADS  Google Scholar 

  37. E. Scomparin (NA50 Collab.), Eur. Phys. J. C 14, 443 (2000).

    Article  Google Scholar 

  38. S. S. Singh and Y. Kumar, Can. J. Phys 92, 31 (2014).

    Article  ADS  Google Scholar 

  39. S. S. Singh and Y. Kumar, Int. J. Mod. Phys. A 30, 1550020 (2015).

    Article  ADS  Google Scholar 

  40. S. S. Singh and Y. Kumar, Int. J. Mod. Phys. A 29, 1450110 (2014).

    Article  ADS  Google Scholar 

  41. N. Haque, A. Bandyopadhyay, J. O. Andersen, M. G. Mustafa, M. Strickland, and N. Su, J. High Energy Phys., No. 05, 027 (2014).

  42. J. Letessier, G. Torrieri, S. Hamieh, and J. Rafelski, J. Phys. G: Nucl. Part. Phys. 27, 427 (2001).

    Article  ADS  Google Scholar 

  43. S. Hamieh, J. Letessier, and J. Rafelski, Phys. Rev. C 62, 064901 (2000).

    Article  ADS  Google Scholar 

  44. A. Vuorinen, Phys. Rev. D 67, 074032 (2003).

    Article  ADS  Google Scholar 

  45. A. Vuorinen, Phys. Rev. D 68, 054017 (2003).

    Article  ADS  Google Scholar 

  46. N. Haque, M. G. Mustafam, and M. Strickland, Phys. Rev. D 87, 105007 (2013).

    Article  ADS  Google Scholar 

  47. Z. He, J. Long, W. Jiang, Y. Ma, and B. Liu, Nucl. Phys. A 724, 477 (2003).

    Article  ADS  Google Scholar 

  48. Z. He, J. Long, W. Jiang, Y. Ma, and B. Liu, Phys. Rev. C 68, 024902 (2003).

    Article  ADS  Google Scholar 

  49. D. Dutta, K. Kumar, A. Mohanty, and R. Choudhury, Phys. Rev. C 60, 014905 (1999).

    Article  ADS  Google Scholar 

  50. N. Guan, Phys. Rev. C 80, 014908 (2009).

    Article  ADS  Google Scholar 

  51. H. Vija and M. H. Thoma, Phys. Lett. B 342, 212 (1995).

    Article  ADS  Google Scholar 

  52. S. S. Singh and Y. Kumar, PoS (CPOD), 071 (2014).

  53. Pragya, A. Goyal, and J. D. Anand, Pram. J. Phys. 49, 225 (1997).

    Google Scholar 

  54. E. L. Bratkovskaya, Nucl. Phys. A 931, 194 (2014).

    Article  ADS  Google Scholar 

  55. P. V. Ruuskanen, in Quark-Gluon Plasma, Ed. by R. C. Hwa (World Scientific, Singapore, 1991).

    Google Scholar 

  56. J. K. Nayak, J. Alam, T. Hirano, S. Sarkar, and B. Sinha, Phys. Rev. C 85, 064906 (2012).

    Article  ADS  Google Scholar 

  57. K. Dusling, D. Teaney, and I. Zahed, Phys. Rev. C 75, 024908 (2007).

    Article  ADS  Google Scholar 

  58. J. L. Long, Z. J. He, Y. G. Ma, and B. Liu, Phys. Rev. C 72, 064907 (2005).

    Article  ADS  Google Scholar 

  59. C. Y. Wong, Introduction to High-Energy Heavy Ion Collisions (World Scientific, Singapore, 1994).

    Book  Google Scholar 

  60. C. Gale and J. I. Kapusta, Can. J. Phys. 67, 1200 (1989).

    Article  ADS  Google Scholar 

  61. C. Gale and P. Lichard, Phys. Rev. D 49, 3338 (1994).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author S. Somorendro Singh would like to thank the University of Delhi for providing the research and development strengthen found to pursue this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yogesh Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yogesh Kumar, Sethy, P.K. & Singh, S.S. A Simple Model Approach to Dilepton Production Rate in Relativistic Heavy Ion Collisions. Phys. Part. Nuclei Lett. 18, 160–165 (2021). https://doi.org/10.1134/S1547477121020096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477121020096

Keywords:

Navigation