Skip to main content
Log in

Validation of the Optimized Parameters for Improvement of Gamma Spectrometers Performance and Efficacy

  • PHYSICS OF ELEMENTARY PARTICLES AND ATOMIC NUCLEI. EXPERIMENT
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

This work investigates in some details the conditions and parameters affecting and controlling the performance of three different types of HpGe spectrometers. The quality and accuracy of any results depend on the optimum working parameters. The major geometrical and electronics parameters were comprehensively studied and validated for n- and p-type germanium detectors. The spectrometers, at the optimized conditions, were then used for analysis of IAEA reference materials as quality control measure. The Angel-3 software was also used with standard point sources for generation of efficiency curves. The results of the optimized parameters verification for enhancing the systems performance, the minimum detectable activity (MDA), the figure of merit (FOM) and specific activity (SA) assessment were precisely validated, calculated and discussed with equations, figures and tables presentations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. M. A. Abdel-Rahman and S. A. El-Mongy, “Analysis of radioactivity levels and hazard assessment of black sand samples from Rashid area,” Egypt. Nucl. Eng. Technol. 49, 1752–1757 (2017).

    Article  Google Scholar 

  2. G. F. Knoll, Radiation Detection and Measurement (Wiley, New York, 2010).

    Google Scholar 

  3. H. Diab, “HPGe detector efficiency curve evaluation for low-level measurements,” Arab J. Nucl. Sci. Appl. 48, 53–59 (2015).

    Google Scholar 

  4. G. Gilmore, Practical Gamma-Ray Spectroscopy (Wiley, Chichester, 2011).

    Google Scholar 

  5. G. Sutton, The Analysis of Environmental Materials Using Gamma Spectrometry (Directorate of Fisheries Res., U.K., 1993).

  6. M. J. Vargas, N. C. Díaz, and D. P. Sánchez, “Efficiency transfer in the calibration of a coaxial p-type HpGe detector using the Monte Carlo method,” Appl. Rad. Isotopes 58, 707–712 (2003).

    Article  Google Scholar 

  7. E. Fairstein and S. Wagner, IEEE Standard Test Procedures for Germanium Gamma-Ray Detectors (IEEE Std., 1996), pp. 325–1996.

    Google Scholar 

  8. M. A. E. Abdel-Rahman, H. Abu Shady, and S. A. El-Mongy, “Analysis of ores and its purified constituents by γ-spectrometry with calculation of uranium isotopic atom, mass, and activity ratios,” Zeitschr. Anorg. Allgem. Chem. 644, 477–482 (2018).

    Article  Google Scholar 

  9. ANSI, American National Standard for Calibration and Use of Germanium Spectrometers for the Measurement of Gamma-Ray Emission Rates of Radionuclides (IEEE, 1999).

  10. K. E. Nelson, T. B. Gosnell, and D. A. Knapp, “The effect of gamma-ray detector energy resolution on the ability to identify radioactive sources,” Report LLNL-TR-411374 (Lawrence Livermore Natl. Labor., Livermore, CA, 2009).

  11. S. Bell, S. Judge, and P. Regan, “An investigation of HPGe gamma efficiency calibration software (ANGLE v. 3) for applications in nuclear decommissioning,” Appl. Rad. Isotopes 70, 2737–2741 (2012).

    Article  Google Scholar 

  12. T. Twomey, The Best Choice of High Purity Germanium (HPGe) Detectors (ORTEC, USA, 2003).

    Google Scholar 

  13. O. Omar Abo-Bakr, M. A. E. Abdel-Rahman, and S. A. El-Mongy, “Validation and correction for 208Tl activity to assay 232Th in equilibrium with its daughters,” Phys. Part. Nucl. Lett. 16, 835–841 (2019).

    Article  Google Scholar 

  14. F. P. Cabal et al., “Monte Carlo based geometrical model for efficiency calculation of an n-type HPGe detector,” Appl. Radiat. Isotopes 68, 2403–2408 (2010).

    Article  Google Scholar 

  15. T. Park and W. Jeon, “Measurement of radioactive samples in marinelli beakers by gamma-ray spectrometry,” J. Radioanal. Nucl. Chem. 193, 133–144 (1995).

    Article  Google Scholar 

  16. M. I. Abbas, “HPGe detector photopeak efficiency calculation including self-absorption and coincidence corrections for marinelli beaker sources using compact analytical expressions,” Appl. Radiat. Isotopes 54, 761–768 (2001).

    Article  Google Scholar 

  17. M. A. E. Abdel-Rahman and S. A. El-Mongy, “Ore leashing processing for yellow cake production and assay of their uranium content by radiometric analysis,” Zeitschr. Anorg. Allgem. Chem. 644, 29–32 (2018).

    Article  Google Scholar 

  18. M. A. E. Abdel-Rahman, M. Sabry, M. R. Khattab, A. El-Taher, and S. A. El-Mongy, “Radioactivity and risk assessment with uncertainty treatment for analysis of black sand minerals,” Zeitschr. Anorg. Allgem. Chem.

  19. B. Kahn, Radioanalytical Chemistry (Springer Science, New York, 2007).

    Book  Google Scholar 

  20. F. A. Ali, “Measurements of naturally occurring radioactive materials (NORMs) in environmental samples,” Thesis (Univ. Surrey, 2008).

  21. R. Keyser and T. Twomey, “Efficiency for close geometries and extended sources of a p-type germanium detector with low-energy sensitivity,” J. Radioanal. Nucl. Chem. 271, 55–61 (2007).

    Article  Google Scholar 

  22. S. Hassan, M. Mahmoud, and M. Abd El-Rahman, “Effect of radioactive minerals potentiality and primordial nuclei distribution on radiation exposure levels within muscovite granite, Wadi Nugrus, Southeastern Desert, Egypt,” J. Geosci. Environ. Protect. 4 (03), 62 (2016).

    Article  Google Scholar 

  23. M. R. Khattab et al., “Determination of uranium in egyptian graniteic ore by gamma, alpha, and mass spectrometry,” Instrum. Sci. Technol. 45, 338–348 (2017).

    Article  Google Scholar 

  24. ANSI, American National Standard for Calibration of Germanium Detectors for In-Situ Gamma-Ray Measurements (Inst. Electrical and Electron. Eng., 2002).

    Google Scholar 

  25. J. Pérez-Moreno et al., “A comprehensive calibration method of Ge detectors for low-level gamma-spectrometry measurements,” Nucl. Instrum. Methods Phys. Res., Sect. A 491, 152–162 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. E. Abdel-Rahman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sayed, M.S., El-Mongy, S.A., Tawfic, A.F. et al. Validation of the Optimized Parameters for Improvement of Gamma Spectrometers Performance and Efficacy. Phys. Part. Nuclei Lett. 18, 222–231 (2021). https://doi.org/10.1134/S1547477121020175

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477121020175

Keywords:

Navigation