Skip to main content
Log in

Untangling of Trajectories and Integrable Systems of Interacting Particles: Exact Results and Universal Laws

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

This review gives a survey of some results about systems of interacting particles and the laws characterizing their behavior on large scales, which are common for a number of phenomena unified under the notion of the Kardar–Parisi–Zhang universality class.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

Notes

  1. By typical we mean the choice of parameters away from the points of phase transitions.

  2. Our example of the model of vicious walkers, or rather its restriction on processes with a constant number of particles is strictly speaking not a Markov chain, since some of the processes drop out from consideration in course of time, violating the probability conservation. Within this section, however, the the probability conservation is not important.

  3. Above, we used the summation over permutations of the ends of the paths that, however, play exactly the same role as the heads.

  4. The prefix q-Hahn was first used when applied to a model with probabilities jumps (27) in the work [47].

  5. Strictly speaking, the sign \( \subset \) denoting a subset, is not used quite correctly in this case, since the sites in \(({\mathbf{x}},{\mathbf{t}})\) may coincide. Nevertheless, we will use it to denote the fact that all points \(({\mathbf{x}},{\mathbf{t}})\) are on the boundary \(\mathcal{B}\).

  6. That is a particle can jump forward with probability \(p\) if at the moment there are no particles with lower numbers in the same site or if all such particles also have decided to jump.

REFERENCES

  1. A. Ya. Khinchin, “Statistical mechanics as a problem of probability theory,” Usp. Mat. Nauk 5 (3), 3–46 (1950).

    Google Scholar 

  2. R. L. Dobrushin an B. Tirozzi, “The central limit theorem and the problem of equivalence of ensembles,” Commun. Math. Phys. 54, 173–192 (1977).

  3. M. Campanino, G. Del Grosso, and B. Tirozzi, “Local limit theorem for Gibbs random fields of particles and unbounded spins,” J. Math. Phys. 20, 1752–1758 (1979).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. M. Kardar, G. Parisi, and Y. C. Zhang, “Dynamic scaling of growing interfaces,” Phys. Rev. Lett. 56, 889 (1986).

    Article  ADS  MATH  Google Scholar 

  5. T. Halpin-Healy and Y. C. Zhang, “Kinetic roughening phenomena, stochastic growth, directed polymers and all that. Aspects of multidisciplinary statistical mechanics,” Phys. Rep. 254 (4–6), 215–414 (1995).

    Article  ADS  Google Scholar 

  6. C. A. Tracy and H. Widom, “Level-spacing distributions and the Airy kernel,” Commun. Math. Phys. 159, 151–174 (1994).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. M. Prähofer and H. Spohn, “Scale invariance of the PNG droplet and the Airy process,” J. Stat. Phys. 108 (5–6), 1071–1106 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  8. M. L. Mehta, Random Matrices (Elsevier, Amsterdam, 2004).

    MATH  Google Scholar 

  9. J. Baik, P. Deift, and K. Johansson, “On the distribution of the length of the longest increasing subsequence of random permutations,” J. Am. Math. Soc. 12, 1119–1178 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  10. A. M. Vershik and S. V. Kerov, “Asymptotics of the Plancherel measure of the symmetric group and the limiting form of Young tableaux,” Dokl. Akad. Nauk 233, 1024–1027 (1977).

    MathSciNet  MATH  Google Scholar 

  11. W. Jockusch, J. Propp, and P. Shor, “Random domino tilings and the Arctic Circle theorem,” arXiv: math/9801068 (1998).

  12. K. Johansson, “The Arctic Circle boundary and the Airy process,” Ann. Probab. 33 (1), 1–30 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  13. P. L. Ferrari and H. Spohn, “Constrained Brownian motion: Fluctuations away from circular and parabolic barriers,” Ann. Probab. 33, 1302–1325 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  14. K. Johansson, “Shape fluctuations and random matrices,” Commun. Math. Phys. 209, 437–476 (2000).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. M. Kardar, “Directed paths in random media,” arXiv: cond-mat/9411022 (1994).

  16. E. H. Lieb and W. Liniger, “Exact analysis of an interacting Bose gas. I. The general solution and the ground state,” Phys. Rev. 130, 1605 (1963).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. G. Amir, I. Corwin, and J. Quastel, “Probability distribution of the free energy of the continuum directed random polymer in 1+1 dimensions,” Commun. Pure Appl. Math. 64, 466–537 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  18. P. Calabrese, P. Le Doussal, and A. Rosso, “Free-energy distribution of the directed polymer at high temperature,” Europhys. Lett. 90, 20002 (2010).

    Article  ADS  Google Scholar 

  19. V. Dotsenko, “Two-temperature statistics of free energies in (1+1) directed polymers,” Europhys. Lett. 116, 40004 (2017).

    Article  ADS  Google Scholar 

  20. T. Sasamoto and H. Spohn, “One-dimensional Kardar–Parisi–Zhang equation: An exact solution and its universality,” Phys. Rev. Lett. 104, 230602 (2010).

    Article  ADS  MATH  Google Scholar 

  21. V. E. Korepin, N. M. Bogoliubov, and A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions (Cambridge Univ. Press, 1997).

    MATH  Google Scholar 

  22. L. H. Gwa and H. Spohn, “Six-vertex model, roughened surfaces, and an asymmetric spin Hamiltonian,” Phys. Rev. Lett. 68, 725 (1992).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. H. Bethe, “On the theory of metals, I. Eigenvalues and eigenfunctions of a linear chain of atoms,” in Selected Works of Hans A. Bethe: With Commentary (World Scientific, 1997), pp. 155–183.

    Book  MATH  Google Scholar 

  24. A. A. Litvin and V. B. Priezzhev, “The Bethe ansatz for the six-vertex model with rotated boundary conditions,” J. Stat. Phys. 60, 307–321 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  25. S. Karlin and J. McGregor, “Coincidence probabilities,” Pac. J. Math. 9, 1141–1164 (1959).

    Article  MathSciNet  MATH  Google Scholar 

  26. B. Lindström, “On the vector representations of induced matroids,” Bull. London Math. Soc. 5, 85–90 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  27. I. M. Gessel and X. Viennot, “Determinants, paths, and plane partitions,” Preprint 1989, http://people.brandeis.edu/~gessel/homepage/papers/pp.pdf.

  28. R. Brak, J. Essam, J. Osborn, A. L. Owczarek, and A. Rechnitzer, “Lattice paths and the constant term,” J. Phys.: Conf. Ser. 42, 47 (2006).

    ADS  Google Scholar 

  29. R. Brak and W. Galleas, “Constant term solution for an arbitrary number of osculating lattice paths,” Lett. Math. Phys. 103, 1261–1272 (2013).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. B. Eynard and M. L. Mehta, “Matrices coupled in a chain: I. Eigenvalue correlations,” J. Phys. A: Math. Gen. 31, 4449 (1998).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. A. Borodin and E. M. Rains, “Eynard–Mehta theorem, Schur process, and their Pfaffian analogs,” J. Stat. Phys. 121, 291–317 (2005).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. J. Krug, “Origins of scale invariance in growth processes,” Adv. Phys. 46, 139–282 (1997).

    Article  ADS  Google Scholar 

  33. P. L. Ferrari, “From interacting particle systems to random matrices,” J. Stat. Mech.: Theory Exp. No. 10, 10016 (2010).

    Article  MathSciNet  Google Scholar 

  34. A. Borodin and V. Gorin, “Lectures on integrable probability,” Probab. Stat. Phys. St. Petersburg 91, 155–214 (2016).

    MathSciNet  MATH  Google Scholar 

  35. J. Quastel, “Introduction to KPZ,” Curr. Dev. Math., No. 1 (2011).

  36. I. Corwin, “The Kardar–Parisi–Zhang equation and universality class,” Random Matrices: Theory Appl. 1 (01), 1130001 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  37. J. G. Brankov, V. B. Priezzhev, and R. V. Shelest, “Generalized determinant solution of the discrete-time totally asymmetric exclusion process and zero-range process,” Phys. Rev. E 69, 066136 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  38. V. B. Priezzhev, “Non-stationary probabilities for the asymmetric exclusion process on a ring,” Pramana 64, 915–925 (2005).

    Article  ADS  Google Scholar 

  39. A. M. Povolotsky and V. B. Priezzhev, “Determinant solution for the totally asymmetric exclusion process with parallel update,” J. Stat. Mech.: Theory Exp., No. 07, P07002 (2006).

  40. A. M. Povolotsky, V. B. Priezzhev, and G. M. Schütz, “Generalized Green functions and current correlations in the TASEP,” J. Stat. Phys. 142, 754–791 (2011).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. S. S. Poghosyan, A. M. Povolotsky, and V. B. Priezzhev, “Universal exit probabilities in the TASEP,” J. Stat. Mech.: Theory Exp., No. 08, P08013 (2012).

  42. A. M. Povolotsky, “On the integrability of zero-range chipping models with factorized steady states,” J. Phys. A: Math. Theor. 46, 465205 (2013).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. M. E. Fisher, “Walks, walls, wetting, and melting,” J. Stat. Phys. 34, 667–729 (1984).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. H. Rosengren, “A non-commutative binomial formula,” J. Geom. Phys. 32, 349–363 (2000).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. M. R. Evans, S. N. Majumdar, and R. K. Zia, “Factorized steady states in mass transport models,” J. Phys. A: Math. Gen. 37, L275 (2004).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. G. Barraquand and I. Corwin, “The \(q\)-Hahn asymmetric exclusion process,” Ann. Appl. Probab. 26, 2304–2356 (2016).

    MathSciNet  MATH  Google Scholar 

  47. A. Borodin, I. Corwin, L. Petrov, and T. Sasamoto, “Spectral theory for interacting particle systems solvable by coordinate Bethe ansatz,” Commun. Math. Phys. 339, 1167–1245 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. R. Frassek, “The non-compact XXZ spin chain as stochastic particle process,” J. Phys. A: Math. Theor. 52, 335202 (2019).

    Article  MathSciNet  Google Scholar 

  49. G. Barraquand and I. Corwin, “Random-walk in Beta-distributed random environment,” Probab. Theory Relat. Fields 167, 1057–1116 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  50. T. Sasamoto and M. Wadati, “One-dimensional asymmetric diffusion model without exclusion,” Phys. Rev. E 58, 4181 (1998).

    Article  ADS  Google Scholar 

  51. M. Alimohammadi, V. Karimipour, and M. Khorrami, “Exact solution of a one-parameter family of asymmetric exclusion processes,” Phys. Rev. E 57, 6370 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  52. M. Alimohammadi, V. Karimipour, and M. Khorrami, “A two-parametric family of asymmetric exclusion processes and its exact solution,” J. Stat. Phys. 97, 373–394 (1999).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. G. M. Schütz, R. Ramaswamy, and M. Barma, “Pairwise balance and invariant measures for generalized exclusion processes,” J. Phys. A: Math. Gen. 29, 837 (1996).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. R. Frassek, C. Giardinà, and J. Kurchan, “Non-compact quantum spin chains as integrable stochastic particle processes,” J. Stat. Phys. 180, 135–171 (2020).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. S. E. Derkachov, “Baxter’s Q-operator for the homogeneous XXX spin chain,” J. Phys. A: Math. Gen. 32, 5299 (1999).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. N. M. Bogoliubov and R. K. Bullough, “A q-deformed completely integrable Bose gas model,” J. Phys. A: Math. Gen. 25, 4057 (1992).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. T. Sasamoto and M. Wadati, “Exact results for one-dimensional totally asymmetric diffusion models,” J. Phys. A: Math. Gen. 31, 6057 (1998).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. A. M. Povolotsky, “Bethe ansatz solution of zero-range process with nonuniform stationary state,” Phys. Rev. E 69, 061109 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  59. A. M. Povolotsky and J. F. Mendes, “Bethe ansatz solution of discrete time stochastic processes with fully parallel update,” J. Stat. Phys. 123, 125–166 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. A. Borodin and I. Corwin, “Macdonald processes,” Probab. Theory Relat. Fields 158, 225–400 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  61. A. Borodin, I. Corwin, and P. Ferrari, “Free energy fluctuations for directed polymers in random media in 1 + 1 dimension,” Commun. Pure Appl. Math. 67, 1129–1214 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  62. V. B. Priezzhev, E. V. Ivashkevich, A. M. Povolotsky, and C. K. Hu, “Exact phase diagram for an asymmetric avalanche process,” Phys. Rev. Lett. 87, 084301 (2001).

    Article  ADS  Google Scholar 

  63. A. Borodin and I. Corwin, “Discrete time \(q\)-TASEPs,” Int. Math. Res. Not., No. 2, 499–537 (2015).

  64. A. Borodin and P. Ferrari, “Large time asymptotics of growth models on space-like paths I: PushASEP,” Electron. J. Probab. 13, 1380–1418 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  65. A. M. Povolotsky, V. B. Priezzhev, and C. K. Hu, “The asymmetric avalanche process,” J. Stat. Phys. 111, 1149–1182 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  66. J. F. Van Diejen, “Diagonalization of an integrable discretization of the repulsive delta Bose gas on the circle,” Commun. Math. Phys. 267, 451–476 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  67. I. Corwin and L. Petrov, “Stochastic higher spin vertex models on the line,” Commun. Math. Phys. 343, 651–700 (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  68. I. Corwin, K. Matveev, and L. Petrov, “The \(q\)-Hahn PushTASEP,” Int. Math. Res. Not. (2018), https://doi.org/10.1093/imrn/rnz106

  69. G. M. Schütz, “Exact solution of the master equation for the asymmetric exclusion process,” J. Stat. Phys. 88, 427–445 (1997).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  70. A. Rákos and G. M. Schütz, “Current distribution and random matrix ensembles for an integrable asymmetric fragmentation process,” J. Stat. Phys. 118, 511–530 (2005).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  71. A. E. Derbyshev, S. S. Poghosyan, A. M. Povolotsky, and V. B. Priezzhev, “The totally asymmetric exclusion process with generalized update,” J. Stat. Mech: Theory Exp., No. 05, P05014 (2012).

  72. C. A. Tracy and H. Widom, “Integral formulas for the asymmetric simple exclusion process,” Commun. Math. Phys. 279, 815–844 (2008).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  73. A. Borodin, I. Corwin, L. Petrov, and T. Sasamoto, “Spectral theory for the \(q\)-Boson particle system,” Compos. Math. 151, 1–67 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  74. R. P. Stanley, Enumerative Combinatorics, 2nd ed. (Cambridge Univ. Press, 2011), Vol. 1.

    Book  MATH  Google Scholar 

  75. T. Sasamoto, “Spatial correlations of the 1D KPZ surface on a flat substrate,” J. Phys. A: Math. Gen. 38, L549 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  76. A. Borodin, P. L. Ferrari, M. Prähofer, and T. Sasamoto, “Fluctuation properties of the TASEP with periodic initial configuration,” J. Stat. Phys. 129, 1055–1080 (2007).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  77. A. Borodin, P. L. Ferrari, and M. Prähofer, “Fluctuations in the discrete TASEP with periodic initial configurations and the Airy1 process,” Int. Math. Res. Pap. (2007), https://doi.org/10.1093/imrp/rpm002

  78. A. Borodin, P. L. Ferrari, and T. Sasamoto, “Transition between Airy1 and Airy2 processes and TASEP fluctuations,” Commun. Pure Appl. Math. 61, 1603–1629 (2008).

    Article  MATH  Google Scholar 

  79. T. Nagao and T. Sasamoto, “Asymmetric simple exclusion process and modified random matrix ensembles,” Nucl. Phys. B 699, 487–502 (2004).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  80. F. Family and T. Vicsek, “Scaling of the active zone in the Eden process on percolation networks and the ballistic deposition model,” J. Phys. A: Math. Gen. 18, L75 (1985).

    Article  ADS  Google Scholar 

  81. J. G. Amar and F. Family, “Critical cluster size: Island morphology and size distribution in submonolayer epitaxial growth,” Phys. Rev. Lett. 74, 2066 (1995).

    Article  ADS  Google Scholar 

  82. J. Krug, P. Meakin, and T. Halpin-Healy, “Amplitude universality for driven interfaces and directed polymers in random media,” Phys. Rev. A 45, 638 (1992).

    Article  ADS  Google Scholar 

  83. P. L. Ferrari, “Slow decorrelations in Kardar–Parisi–Zhang growth,” J. Stat. Mech.: Theory Exp., No. 07, P07022 (2008).

  84. I. Corwin, P. L. Ferrari, and S. Péché, “Universality of slow decorrelation in KPZ growth,” Ann. l’IHP Probab. Stat. 48, 134–150 (2012).

    MathSciNet  MATH  Google Scholar 

  85. F. J. Dyson, “A Brownian motion model for the eigenvalues of a random matrix,” J. Math. Phys. 3, 1191–1198 (1962).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  86. A. Borodin and P. Ferrari, “Large time asymptotics of growth models on space-like paths I: PushASEP,” Electron. J. Probab. 13, 1380–1418 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  87. A. Borodin, P. L. Ferrari, and T. Sasamoto, “Large time asymptotics of growth models on space-like paths II: PNG and parallel TASEP,” Commun. Math. Phys. 283, 417–449 (2008).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  88. T. Imamura and T. Sasamoto, “Dynamics of a tagged particle in the asymmetric exclusion process with the step initial condition,” J. Stat. Phys. 128, 799–846 (2007).

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Povolotsky.

Additional information

In memory of my Teacher and senior friend Vyacheslav Borisovich Priezzhev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Povolotsky, A.M. Untangling of Trajectories and Integrable Systems of Interacting Particles: Exact Results and Universal Laws. Phys. Part. Nuclei 52, 239–273 (2021). https://doi.org/10.1134/S1063779621020040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779621020040

Navigation