Skip to main content
Log in

Self-Similar Potentials in Quantum Mechanics and Coherent States

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

A brief description of the relations between the factorization method in quantum mechanics, self-similar potentials, integrable systems and the theory of special functions is given. New coherent states of the harmonic oscillator related to the Fourier transformation are constructed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. L. Infeld, “On a new treatment of some eigenvalue problems,” Phys. Rev. 59, 737–747 (1941).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. E. Schrödinger, “A method of determining quantum-mechanical eigenvalues and eigenfunctions,” Proc. R. Irish Acad. A 46, 9–16 (1940–1941).

    MathSciNet  MATH  Google Scholar 

  3. E. Schrödinger, “Further studies on solving eigenvalue problems by factorization,” Proc. R. Irish Acad. A 46, 183–206 (1940–1941).

    MathSciNet  MATH  Google Scholar 

  4. L. Infeld and T. E. Hull, “The factorization method,” Rev. Mod. Phys. 23, 21–68 (1951).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. M. G. Krein, “On a continuous analogue of a Christoffel formula in the theory of orthogonal polynomials,” Dokl. Akad. Nauk SSSR 19, 1095–1097 (1957).

    Google Scholar 

  6. V. P. Spiridonov, “Deformation of supersymmetric and conformal quantum mechanics through affine transformations,” in International Workshop on Harmonic Oscillators (College Park, USA, 25–28 March 1992); NASA Conf. Publ. 3197, 93–108 (1992); arXiv:hep-th/9208073.

    Google Scholar 

  7. V. Spiridonov, “Universal superpositions of coherent states and self-similar potentials,” Phys. Rev. A 52, 1909–1935 (Erratum A 53, 2903) (1995); arXiv:quant-ph/9601030.

  8. U. Frisch and R. Bourret, “Parastochastics,” J. Math. Phys. 11, 364–390 (1970).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. D. D. Coon, S. Yu, and S. Baker, “Operator formulation of a dual multiparticle theory with nonlinear trajectories,” Phys. Rev. D 5, 1429–1433 (1972).

    Article  ADS  Google Scholar 

  10. M. Arik and D. D. Coon, “Hilbert spaces of analytic functions and generalized coherent states,” J. Math. Phys. 17, 524–527 (1976).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. A. J. Macfarlane, “On \(q\)-analogues of the quantum harmonic oscillator and quantum group \(SU{{(2)}_{q}}\),” J. Phys. A: Math. Gen. 22, 4581–4588 (1989).

    Article  ADS  MATH  Google Scholar 

  12. V. P. Spiridonov, “Exactly solvable potentials and quantum algebras,” Phys. Rev. Lett. 69, 398–401 (1992).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. V. Spiridonov, “Nonlinear algebras and spectral problems,” in Proceedings of the CAP-NSERC Workshop on Quantum Groups, Integrable Models and Statistical Systems (Kingston, Canada, 13–18 July 1992) (World Scientific, 1993), pp. 246–256.

  14. V. Spiridonov, “Symmetries of the self-similar potentials,” Comm. Theor. Phys. (Allahabad) 2, 149–163 (1993).

    MathSciNet  Google Scholar 

  15. B. A. Dubrovin, V. B. Matveev, and S. Novikov, “Non-linear equations of Korteweg–de Vries type, finite-zone linear operators, and Abelian varieties,” Russ. Math. Surv. 31, 59–146 (1976).

    Article  MATH  Google Scholar 

  16. J. Weiss, “Periodic fixed points of Bäcklund transformations and the Korteweg–de Vries equation,” J. Math. Phys. 27, 2647–2656 (1986).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. A. P. Veselov and A. B. Shabat, “Dressing chains and the spectral theory of the Schrödinger operator,” Funct. Anal. Its Appl. 27, 81–96 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  18. S. Skorik and V. Spiridonov, “On the spectra of hyperelliptic potentials,” Phys. Lett. A 190, 90–95 (1994).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. H. Flaschka, “A commutator representation of Painlevé equations,” J. Math. Phys. 21, 1016–1018 (1980).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. F. J. Bureau, “Differential equations with fixed critical points,” in Painlevé Transcendents (Plenum Press, New York, 1990), pp. 103–123.

    Google Scholar 

  21. V. E. Adler, “Nonlinear chains and Painlevé equations,” Physica D 73, 335–351 (1994).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. A. Tovbis, “Meromorphic solutions to a differential-difference equation describing certain self-similar potentials,” Nonlinearity 14, 933–842 (2001).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. S. Skorik and V. Spiridonov, “Self-similar potentials and the \(q\)-oscillator algebra at roots of unity,” Lett. Math. Phys. 28, 59–74 (1993).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. A. B. Shabat, “The infinite dimensional dressing dynamical system,” Inverse Prob. 8, 303–308 (1992).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. E. Schrödinger, “Der stetige Übergang von der Mikro- zur Makromechanik,” Die Naturwissenschaften 14, 664–666 (1926).

    Article  ADS  MATH  Google Scholar 

  26. G. E. Andrews, R. Askey, and R. Roy, “Special functions,” in Encyclopedia of Math. Appl. (Cambridge Univ. Press, Cambridge, 1999), Vol. 71.

    Google Scholar 

  27. V. P. Spiridonov, “Coherent states of the \(q\)-Weyl algebra,” Lett. Math. Phys. 35, 179–185 (1995).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. R. Saxena and K. Singh, “Fractional Fourier transform: A novel tool for signal processing,” J. Indian Inst. Sci. 85, 1–26 (2005).

    Google Scholar 

  29. V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. P. Pitaevskii, Theory of Solitons: The Inverse Scattering Method (Plenum Press, New York, London, 1984).

    MATH  Google Scholar 

  30. M. M. Crum, “Associated Sturm–Liouville systems,” Quart. J. Math. Oxford 6, 121–127 (1955).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. V. B. Matveev and M. A. Salle, Darboux Transformations and Solitons (Springer-Verlag, Berlin, 1991).

    Book  MATH  Google Scholar 

  32. R. Hirota, “Exact solution of the Korteweg–de Vries equation for multiple collisions of solitons,” Phys. Rev. Lett. 27, 1192–1194 (1971).

    Article  ADS  MATH  Google Scholar 

  33. I. M. Loutsenko and V. P. Spiridonov, “Self-similar potentials and Ising models,” JETP Lett. 66, 747–753 (1997).

    Article  Google Scholar 

  34. I. M. Loutsenko and V. P. Spiridonov, “Spectral self-similarity, one-dimensional Ising chains and random matrices,” Nucl. Phys. B 538, 731–758 (1999).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. I. M. Loutsenko and V. P. Spiridonov, “A critical phenomenon in solitonic Ising chains,” SIGMA 3, 059 (2007).

  36. I. M. Loutsenko and V. P. Spiridonov, “Soliton solutions of integrable hierarchies and Coulomb plasmas,” J. Stat. Phys. 99, 751–767 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  37. Yu. Yu. Berest and I. M. Loutsenko, “Huygens’ principle in Minkowski spaces and soliton solutions of the Korteweg–de Vries equation,” Commun. Math. Phys. 190, 113–132 (1997).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. I. Loutsenko, “Integrable dynamics of charges related to the bilinear hypergeometric equation,” Commun. Math. Phys. 242, 251–275 (2003).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. I. Loutsenko, “Equilibrium of charges and differential equations solved by polynomials,” J. Phys. A: Math. Gen. 37, 1309–1321 (2004).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. I. Loutsenko, “The variable coefficient Hele-Shaw problem, integrability and quadrature identities,” Commun. Math. Phys. 268, 465–479 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. I. Loutsenko and O. Yermolayeva, “On integrability and exact solvability in deterministic and stochastic Laplacian growth,” Math. Model. Nat. Phenom. 15, 3 (2020).

    Article  MathSciNet  Google Scholar 

  42. W. Miller, Jr., “Lie theory and difference equations I,” J. Math. Anal. Appl. 28, 383–399 (1969).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. G. Szegö, Orthogonal Polynomials (AMS, New York, 1939).

    MATH  Google Scholar 

  44. J. Geronimus, “On polynomials orthogonal with respect to a given sequence of numbers and a theorem by W. Hahn,” Izv. Acad. Sci. USSR 4, 215–228 (1940).

    Google Scholar 

  45. H. Rutishauser, “Der Quotienten-Differenzen-Algorithmus,” ZAMP 5, 233–251 (1954).

    ADS  MathSciNet  MATH  Google Scholar 

  46. V. Spiridonov and A. Zhedanov, “Discrete Darboux transformations, discrete time Toda lattice and the Askey–Wilson polynomials,” Methods Appl. Anal. 2, 369–398 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  47. V. Spiridonov and A. Zhedanov, “Discrete-time Volterra chain and classical orthogonal polynomials,” J. Phys. A: Math. Gen. 30, 8727–8737 (1997).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. A. Zhedanov, “Rational spectral transformations and orthogonal polynomials,” J. Comput. Appl. Math. 85, 67–86 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  49. V. P. Spiridonov and A. S. Zhedanov, “Spectral transformation chains and some new biorthogonal rational functions,” Commun. Math. Phys. 210, 49–83 (2000).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. V. P. Spiridonov, “Essays on the theory of elliptic hypergeometric functions,” Russ. Math. Surv. 63, 405–472 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  51. V. P. Spiridonov, “Superconformal indices, Seiberg dualities and special functions,” Phys. Part. Nucl. 51, 508–513 (2020); arXiv:1912.11514.

  52. A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher Transcendental Functions (McGraw-Hill, New York, 1953), Vols. 1–3.

    MATH  Google Scholar 

  53. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 4th ed. (Acad. Press, New York, 1994).

    MATH  Google Scholar 

  54. NIST Digital Library of Mathematical Functions, http://dlmf.nist.gov/.

  55. A. V. Kitaev, “Special functions of the isomonodromy type,” Acta Appl. Math. 64, 1–32 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  56. N. Ya. Vilenkin, Special Functions and the Theory of Group Representations, Mathematical Monographs Vol. 22 (Amer. Math. Soc., Providence, R.I., 1968).

  57. R. Yamilov, “Symmetries as integrability criteria for differential difference equations,” J. Phys. A: Math. Gen. 39, R541–R623 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. Self-Similar Systems, Proceedings of the International Workshop, Ed. by V. B. Priezzhev and V. P. Spiridonov (JINR, E5-99-38, Dubna, 1999).

  59. V. G. Bagrov and B. F. Samsonov, “Darboux transformations and the Schrödinger equation,” Phys. Part. Nucl. 28, 374–397 (1997).

    Article  Google Scholar 

  60. B. Mielnik and O. Rosas-Ortiz, “Factorization: Little or great algorithm?,” J. Phys. A: Math. Gen. 37, 10007 (2004).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. A. A. Andrianov and M. V. Ioffe, “Nonlinear supersymmetric quantum mechanics: Concepts and realizations,” J. Phys. A: Meth. Theor. 45, 503001 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  62. V. A. Rubakov and V. P. Spiridonov, “Parasupersymmetric quantum mechanics,” Mod. Phys. Lett. A 3, 1337–1347 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  63. A. A. Andrianov, M. V. Ioffe, and V. P. Spiridonov, “Higher-derivative supersymmetry and the Witten index,” Phys. Lett. A 174, 273–279 (1993).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Funding

This work is partially supported by the Laboratory of Mirror Symmetry NRU HSE, RF government grant, ag. no. 14.641.31.0001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Spiridonov.

Additional information

To the blessed memory of V.B. Priezzhev

Based on the talk given at the seminar “In the search of beauty: from condensed matter to integrable systems”, dedicated to V.B. Priezzhev, 10 September 2019, BLTP JINR; http:// thproxy.jinr.ru/video/seminars/2019-09-10/mp4/

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spiridonov, V.P. Self-Similar Potentials in Quantum Mechanics and Coherent States. Phys. Part. Nuclei 52, 274–289 (2021). https://doi.org/10.1134/S1063779621020052

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779621020052

Navigation