Skip to main content
Log in

Electrochemical derusting in molten Na2CO3-K2CO3

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

The formation of a rust layer on iron and steels surfaces accelerates their degradation and eventually causes material failure. In addition to fabricating a protective layer or using a sacrificial anode, repairing or removing the rust layer is another way to reduce the corrosion rate and extend the lifespans of iron and steels. Herein, an electrochemical healing approach was employed to repair the rust layer in molten Na2CO3-K2CO3. The rusty layers on iron rods and screws were electrochemically converted to iron in only several minutes and a metallic luster appeared. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) analyses showed that the structures of the rust layer after healing were slightly porous and the oxygen content reached a very low level. Thus, high-temperature molten-salt electrolysis may be an effective way to metalize iron rust of various shapes and structures in a short time, and could be used in the repair of cultural relics and even preparing a three-dimensional porous structures for other applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. de Beer, E. Worrell, and K. Blok, Future technologies for energy-efficient iron and steel making, Annu. Rev. Energy Env., 23(1998), No. 1, p. 123.

    Article  Google Scholar 

  2. S.J. Oh, D.C. Cook, and H.E. Townsend, Characterization of iron oxides commonly formed as corrosion products on steel, Hyperfine Interact., 112(1998), No. 1–4, p. 59.

    Article  CAS  Google Scholar 

  3. H. Tamura, The role of rusts in corrosion and corrosion protection of iron and steel, Corros. Sci., 50(2008), No. 7, p. 1872.

    Article  CAS  Google Scholar 

  4. Z.M. Wang, X.Y. Zeng, and W.L. Huang, Parameters and surface performance of laser removal of rust layer on A3 steel, Surf. Coat. Technol., 166(2003), No. 1, p. 10.

    Article  CAS  Google Scholar 

  5. Z.L. Tang, A review of corrosion inhibitors for rust preventative fluids, Curr. Opin. Solid State Mater. Sci., 23(2019), No. 4, art. No. 100759.

  6. V. Narayanan, R.K. Singh, and D. Marla, Laser cleaning for rust removal on mild steel: An experimental study on surface characteristics, [in] The 3rd International Conference on Design and Manufacturing Engineering, Vol. 221, 2018, Melbourne, p. 01007.

  7. A. Azhari, C. Schindler, K. Hilbert, C. Godard, and E. Kerscher, Influence of waterjet peening and smoothing on the material surface and properties of stainless steel 304, Surf. Coat. Technol., 258(2014), p. 1176.

    Article  CAS  Google Scholar 

  8. G.Z. Chen, D.J. Fray, and T.W. Farthing, Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride, Nature, 407(2000), No. 6802, p. 361.

    Article  CAS  Google Scholar 

  9. A.M. Abdelkader, K.T. Kilby, A. Cox, and D.J. Fray, Voltam-metry of electro-deoxidation of solid oxides, Chem. Rev., 113(2013), No. 5, p. 2863.

    Article  CAS  Google Scholar 

  10. S.L. Wang and Y.J. Li, Reaction mechanism of direct electro-reduction of titanium dioxide in molten calcium chloride, J. Electroanal. Chem., 571(2004), No. 1, p. 37.

    Article  CAS  Google Scholar 

  11. A. Allanore, L. Yin, and D.R. Sadoway, A new anode material for oxygen evolution in molten oxide electrolysis, Nature, 497(2013), No. 7449, p. 353.

    Article  CAS  Google Scholar 

  12. T. Wang, H.P. Gao, X.B. Jin, H.L. Chen, J.J. Peng, and G.Z. Chen, Electrolysis of solid metal sulfide to metal and sulfur in molten NaCl-KCl, Electrochem. Commun., 13(2011), No. 12, p. 1492.

    Article  CAS  Google Scholar 

  13. H.Y. Yin, B. Chung, and D.R. Sadoway, Electrolysis of a molten semiconductor, Nat. Commun., 7(2016), art. No. 12584.

  14. J.K. Qu, H.W. Xie, Q.S. Song, Z.Q. Ning, H.J. Zhao, and H.Y. Yin, Electrochemical desulfurization of solid copper sulfides in strongly alkaline solutions, Electrochem. Commun., 92(2018), p. 14.

    Article  CAS  Google Scholar 

  15. S.Q. Jiao and H.M. Zhu, Novel metallurgical process for titanium production, J. Mater. Res., 21(2006), No. 9, p. 2172.

    Article  CAS  Google Scholar 

  16. R.O. Suzuki, M. Aizawa, and K. Ono, Calcium-deoxidation of niobium and titanium in Ca-saturated CaCl2 molten salt, J. Alloys Compd., 288(1999), No. 1–2, p. 173.

    Article  CAS  Google Scholar 

  17. D. Hu, A. Dolganov, M.C. Ma, B. Bhattacharya, M.T. Bishop, and G.Z. Chen, Development of the Fray-Farthing-Chen cam-bridge process: towards the sustainable production of titanium and its alloys, JOM, 70(2018), No. 2, p. 129.

    Article  CAS  Google Scholar 

  18. H.W. Xie, H.J. Zhao, Q.S. Song, Z.Q. Ning, J.K. Qu, and H.Y. Yin, Anodic gases generated on a carbon electrode in oxide-ion containing molten CaCl2 for the electro-deoxidation process, J. Electrochem. Soc, 165(2018), No. 14, p. E759.

    Article  CAS  Google Scholar 

  19. D.H. Wang, A.J. Gmitter, and D.R. Sadoway, Production of oxygen gas and liquid metal by electrochemical decomposition of molten iron oxide, J. Electrochem. Soc., 158(2011), No. 6, p. E51.

    Article  CAS  Google Scholar 

  20. N.J. Siambun, H. Mohamed, D. Hu, D. Jewell, Y.K. Beng, and G.Z. Chen, Utilisation of carbon dioxide for electro-carburisa-tion of mild steel in molten carbonate salts, J. Electrochem. Soc., 158(2011), No. 11, p. H1117.

    Article  CAS  Google Scholar 

  21. W. Xiao, X.B. Jin, Y. Deng, D.H. Wang, and G.Z. Chen, Three-phase interlines electrochemically driven into insulator compounds: A penetration model and its verification by electrore-duction of solid AgCl, Chem. Eur. J., 13(2007), No. 2, p. 604.

    Article  CAS  Google Scholar 

  22. W. Xiao, X.B. Jin, Y. Deng, D.H. Wang, and G.Z. Chen, Rationalisation and optimisation of solid state electro-reduction of SiO2 to Si in molten CaCl2 in accordance with dynamic three-phase interlines based voltammetry, J. Electroanal. Chem., 639(2010), No. 1–2, p. 130.

    Article  CAS  Google Scholar 

  23. W. Xiao, X.B. Jin, Y. Deng, D.H. Wang, X.H. Hu, and G.Z. Chen, Electrochemically driven three-phase interlines into insulator compounds: Electroreduction of solid SiO2 in molten CaCl2, Chem. Phys. Chem., 7(2006), No. 8, p. 1750.

    Article  CAS  Google Scholar 

  24. E. Gordo, G.Z. Chen, and D.J. Fray, Toward optimisation of electrolytic reduction of solid chromium oxide to chromium powder in molten chloride salts, Electrochim. Acta, 49(2004), No. 13, p. 2195.

    Article  CAS  Google Scholar 

  25. W. Xiao and D.H. Wang, The electrochemical reduction processes of solid compounds in high temperature molten salts, Chem. Soc. Rev., 43(2014), No. 10, p. 3215.

    Article  CAS  Google Scholar 

  26. X.H. Cheng, L. Fan, H.Y. Yin, H. Liu, K.F. Du, and D.H. Wang, High-temperature oxidation behavior of Ni-11Fe-10Cu alloy: Growth of a protective oxide scale, Corros. Sci., 112(2016), p. 54.

    Article  CAS  Google Scholar 

  27. X.H. Cheng, H.Y. Yin, and D.H. Wang, Rearrangement of oxide scale on Ni-11Fe-10Cu alloy under anodic polarization in molten Na2CO3-K2CO3, Corros. Sci., 141(2018), p. 168.

    Article  CAS  Google Scholar 

  28. H.Y. Yin, D.Y. Tang, D. Zhu, Y. Zhang, and D.H. Wang, Production of iron and oxygen in molten K2CO3-Na2CO3 by electrochemically splitting Fe2O3 using a cost affordable inert anode, Electrochem. Commun., 13(2011), No. 12, p. 1521.

    Article  CAS  Google Scholar 

  29. D.Y. Tang, K.Y. Zheng, H.Y. Yin, X.H. Mao, D.R. Sadoway, and D.H. Wang, Electrochemical growth of a corrosion-resistant multi-layer scale to enable an oxygen-evolution inert anode in molten carbonate, Electrochim. Acta, 279(2018), p. 250.

    Article  CAS  Google Scholar 

  30. X.H. Cheng, D.D. Tang, H. Zhu, and D.H. Wang, Cobalt powder production by electro-reduction of Co3O4 granules in molten carbonates using an inert anode, J. Electrochem. Soc., 162(2015), No. 6, p. E68.

    Article  CAS  Google Scholar 

  31. D.Y. Tang, H.Y. Yin, W. Xiao, H. Zhu, X.H. Mao, and D.H. Wang, Reduction mechanism and carbon content investigation for electrolytic production of iron from solid Fe2O3 in molten K2CO3-Na2CO3 using an inert anode, J. Electroanal. Chem., 689(2013), p. 109.

    Article  CAS  Google Scholar 

  32. D.Y. Tang, H.Y. Yin, X.H. Cheng, W. Xiao, and D.H. Wang, Green production of nickel powder by electroreduction of NiO in molten Na2CO3-K2CO3, Int. J. Hydrogen Energy, 41(2016), No. 41, p. 18699.

    Article  CAS  Google Scholar 

  33. A. Allanore, H. Lavelaine, G. Valentin, J.P. Birat, and F.M. Lapicque, Iron metal production by bulk electrolysis of iron ore particles in aqueous media, J. Electrochem. Soc., 155(2008), No. 9, p. E125.

    Article  CAS  Google Scholar 

  34. A. Cox and D.J. Fray, Electrolytic formation of iron from haematite in molten sodium hydroxide, Ironmaking Steelmaking, 35(2008), No. 8, p. 561.

    Article  CAS  Google Scholar 

  35. D.H. Wang, X.B. Jin, and G.Z. Chen, Solid state reactions: An electrochemical approach in molten salts, Annu. Rep. Prog. Chem. Sect. C, 104(2008), p. 189.

    Article  CAS  Google Scholar 

  36. F. Lantelme and H. Groult, Molten Salts Chemistry: From Lab to Applications, vol. 28, Elsevier, Amsterdam, 2013.

    Google Scholar 

  37. N. Linares, A.M. Silvestre-Albero, E. Serrano, J. Silvestre-Albero, and J. García-Martínez, Mesoporous materials for clean energy technologies, Chem. Soc. Rev., 43(2014), No. 22, p. 7681.

    Article  CAS  Google Scholar 

  38. M.Y. Wang, X.T. Yu, Z. Wang, X.Z. Gong, Z.C. Guo, and L. Dai, Hierarchically 3D porous films electrochemically constructed on gas-liquid-solid three-phase interface for energy application, J. Mater. Chem. A, 5(2017), No. 20, p. 9488.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the Fundamental Research Funds for the Central Universities (No. N172505002), the National Natural Science Foundation of China (No. 51704060), the National Thousand Youth Talent Program of China, and the 111 Project (No. B16009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua-yi Yin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Dy., Ma, X., Xie, Hw. et al. Electrochemical derusting in molten Na2CO3-K2CO3. Int J Miner Metall Mater 28, 637–643 (2021). https://doi.org/10.1007/s12613-020-2068-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2068-2

Keywords

Navigation