Skip to main content

Advertisement

Log in

Efficient metallization of magnetite concentrate by reduction with agave bagasse as a source of reducing agents

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

The reduction behavior and metallization degree of magnetite concentrate with agave bagasse were investigated in an inert atmosphere. The effects of temperature, biomass content, and residence time on reduction experiments and metallization degree were investigated by X-ray diffraction and scanning electron microscopy. Compared with other types of biomass, agave bagasse had lower contents of nitrogen, sulfur, and ash. X-ray diffraction analysis showed that the metallization degree improved with increasing temperature and biomass content. Complete metallization was achieved at 1100°C for 30 min with 65:35 and 50:50 ratios of the magnetite concentrate to the agave bagasse. These results demonstrate that agave bagasse promotes the efficient metallization of magnetite concentrate without the external addition of a reducing agent. Therefore, this biomass is a technical suitable alternative to replace fossil fuels in steelmaking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D.B. Guo, L.D. Zhu, S. Guo, B.H. Cui, S.P. Luo, M. Laghari, Z.H. Chen, C.F. Ma, Y. Zhou, J. Chen, B. Xiao, M. Hu, and S.Y. Luo, Direct reduction of oxidized iron ore pellets using biomass syngas as the reducer, Fuel Process. Technol., 148(2016), p. 276.

    Article  CAS  Google Scholar 

  2. J.P.S.G. de Alencar, V.G. de Resende, and L.F.A. de Castro, Effect of temperature on morphology of metallic iron and formation of clusters of iron ore pellets, Metall. Mater. Trans. B., 47(2016), No. 1, p. 85.

    Article  CAS  Google Scholar 

  3. E. Mousa, C. Wang, J. Riesbeck, and M. Larsson, Biomass applications in iron and steel industry: An overview of challenges and opportunities, Renewable Sustainable Energy Rev., 65(2016), p. 1247.

    Article  Google Scholar 

  4. R.F. Wei, L.L. Zhang, D.Q. Cang, J.X. Li, X.W. Li, and C.C. Xu, Current status and potential of biomass utilization in ferrous metallurgical industry, Renewable Sustainable Energy Rev., 68(2017), p. 511.

    Article  CAS  Google Scholar 

  5. H. Konishi, K. Ichikawa, and T. Usui, Effect of residual volatile matter on reduction of iron oxide in semi-charcoal composite pellets, ISIJ Int., 50(2010), No. 3, p. 386.

    Article  CAS  Google Scholar 

  6. U. Srivastava, S.K. Kawatra, and T.C. Eisele, Production of pig iron by utilizing biomass as a reducing agent, Int. J. Miner. Process., 119(2013), p. 51.

    Article  CAS  Google Scholar 

  7. M. Gan, X.H. Fan, X.L. Chen, Z.Y. Ji, W. Lv, Y. Wang, Z.Y. Yu, and T. Jiang, Reduction of pollutant emission in iron ore sintering process by applying biomass fuels, ISIJ Int., 52(2012), No. 9, p. 1574.

    Article  CAS  Google Scholar 

  8. T. Kawaguchi and M. Hara, Utilization of biomass for iron ore sintering, ISIJ Int., 53(2013), No. 9, p. 1599.

    Article  CAS  Google Scholar 

  9. S.J. Street, G.A. Brooks, and H.K. Worner, Recent developments in the environment process, Can. Metall. Q., 36(1997), No. 5, p. 333.

    Article  Google Scholar 

  10. Y. Ueki, R. Yoshiie, I. Naruse, K.I. Ohno, T. Maeda, K. Nishioka, and M. Shimizu, Reaction behavior during heating biomass materials and iron oxide composites, Fuel, 104(2013), p. 58.

    Article  CAS  Google Scholar 

  11. V. Strezov, Iron ore reduction using sawdust: Experimental analysis and kinetic modelling, Renewable Energy, 31(2006), No. 12, p. 1892.

    Article  CAS  Google Scholar 

  12. R.Z. Abd Rashid, H. Mohd. Salleh, M.H. Ani, N.A. Yunus, T. Akiyama, and H. Purwanto, Reduction of low grade iron ore pellet using palm kernel shell, Renewable Energy, 63(2014), p. 617.

    Article  CAS  Google Scholar 

  13. P. Yuan, B.X. Shen, D.P. Duan, G. Adwek, X. Mei, and F.J. Lu, Study on the formation of direct reduced iron by using biomass as reductants of carbon containing pellets in RHF process, Energy, 141(2017), p. 472.

    Article  CAS  Google Scholar 

  14. M. Zandi, M. Martinez-Pacheco, and T.A.T. Fray, Biomass for iron ore sintering, Miner. Eng., 23(2010), No. 14, p. 1139.

    Article  CAS  Google Scholar 

  15. N.A. Yunus, M.H. Ani, H. Mohd. Salleh, R.Z. Abd Rashid, T. Akiyama, and H. Purwanto, Reduction of iron ore/empty fruit bunch char briquette composite, ISIJ Int., 53(2013), No. 10, p. 1749.

    Article  CAS  Google Scholar 

  16. M.C. Cedeño, Tequila Production, Crit. Rev. Biotechnol., 15(1995), No. 1, p. 1.

    Article  Google Scholar 

  17. J. de J. Montoya-Rosales, D.K. Olmos-Hernández, R. Palomo-Briones, V. Montiel-Corona, A.G. Mari, and E. Razo-Flores, Improvement of continuous hydrogen production using individual and binary enzymatic hydrolysates of agave bagasse in suspended-culture and biofilm reactors, Bioresour. Technol., 283(2019), p. 251.

    Article  CAS  Google Scholar 

  18. G. Iniguez-Covarrubias, S.E. Lange, and R.M. Rowell, Utilization of byproducts from the tequila industry: Part 1: Agave bagasse as a raw material for animal feeding and fiberboard production, Bioresour. Technol., 77(2001), No. 1, p. 25.

    Article  CAS  Google Scholar 

  19. G. Iniguez-Covarrubias, R. Díaz-Teres, R. Sanjuan-Dueñas, J. Anzaldo-Hernández, and R.M. Rowell, Utilization of byproducts from the tequila industry. Part 2: Potential value of Agave tequilana Weber azul leaves, Bioresour. Technol., 77(2001), No. 2, p. 101.

    Article  CAS  Google Scholar 

  20. ASTM International, ASTM D 2016-74: Standard Test Method for Moisture in Wood, ASTM International, West Conshohocken, 2003.

    Google Scholar 

  21. ASTM International, ASTM D 1102-84: Standard Test Method for Ash in Wood, ASTM International, West Conshohocken, 2001.

    Google Scholar 

  22. ASTM International, ASTM D 1762-84: Standard Test Method for Chemical Analysis of Wood Charcoal, ASTM International, West Conshohocken, 2001.

    Google Scholar 

  23. ASTM International, ASTM D 3172-89: Standard Practice for Proximate Analysis of Coal and Coke, ASTM International, West Conshohocken, 2002.

    Google Scholar 

  24. M.M. Parascanu, F. Sandoval-Salas, G. Soreanu, J.L. Valverde, and L. Sanchez-Silva, Valorization of Mexican biomasses through pyrolysis, combustion and gasification processes, Renewable Sustainable Energy Rev., 71(2017), p. 509.

    Article  CAS  Google Scholar 

  25. I. Obernberger, T. Brunner, and G. Bärnthaler, Chemical properties of solid biofuels—significance and impact, Biomass and Bioenergy, 30(2006), No. 11, p. 973.

    Article  CAS  Google Scholar 

  26. L.M. Lu, M. Adam, M. Kilburn, S. Hapugoda, M. Somerville, S. Jahanshahi, and J.G. Mathieson, Substitution of charcoal for coke breeze in iron ore sintering, ISIJ Int., 53(2013), No. 9, p. 1607.

    Article  CAS  Google Scholar 

  27. K. Akhtar, A. Tahmasebi, L. Tian, J.L. Yu, and J. Lucas, An experimental study of direct reduction of hematite by lignite char, J. Therm. Anal. Calorim., 123(2016), No. 2, p. 1111.

    Article  CAS  Google Scholar 

  28. E. Tronc, C.A. Hernández-Escobar, R. Ibarra-Gómez, A. Estrada-Monje, J. Navarrete-Bolaños, and E.A. Zaragoza-Contreras, Blue agave fiber esterification for the reinforcement of thermoplastic composites, Carbohydr. Polym., 67(2007), No. 2, p. 245.

    Article  CAS  Google Scholar 

  29. A. Liñán-Montes, S.M. de la Parra-Arciniega, M.T. Garza-González, R.B. García-Reyes, E. Soto-Regalado, and F.J. Cerino-Córdova, Characterization and thermal analysis of agave bagasse and malt spent grain, J. Therm. Anal. Calorim., 115(2014), No. 1, p. 751.

    Article  CAS  Google Scholar 

  30. J.A. Perez-Pimienta, M.G. Lopez-Ortega, J.A. Chavez-Carvayar, P. Varanasi, V. Stavila, G. Cheng, S. Singh, and B.A. Simmons, Characterization of agave bagasse as a function of ionic liquid pretreatment, Biomass Bioenergy, 75(2015), p. 180.

    Article  CAS  Google Scholar 

  31. G.R. Filho, S.F. da Cruz, D. Pasquini, D.A. Cerqueira, V. de Souza Prado, and R.M.N. de Assunção, Water flux through cellulose triacetate films produced from heterogeneous acetylation of sugar cane bagasse, J. Membr. Sci., 177(2000), No. 1–2, p. 225.

    Article  Google Scholar 

  32. J.G. Vieira, G. Rodrigues Filho, C. da S. Meireles, F.A.C. Faria, D.D. Gomide, D. Pasquini, S.F. da Cruz, R.M.N. de Assunção, and L.A. de C. Motta, Synthesis and characterization of methyl-cellulose from cellulose extracted from mango seeds for use as a mortar additive, Polimeros, 22(2012), No. 1, p. 80.

    Article  CAS  Google Scholar 

  33. S. Kestur G., T.H.S. Flores-Sahagun, L.P. Dos Santos, J. Dos Santos, I. Mazzaro, and A. Mikowski, Characterization of blue agave bagasse fibers of Mexico, Composites Part A, 45(2013), p. 153.

    Article  CAS  Google Scholar 

  34. J. Saucedo-Luna, A.J. Castro-Montoya, M.M. Martinez-Pacheco, C.R. Sosa-Aguirre, and J. Campos-Garcia, Efficient chemical and enzymatic saccharification of the lignocellulosic residue from Agave tequilana bagasse to produce ethanol by Pichia caribbica, J. Ind. Microbiol. Biotechnol., 38(2011), No. 6, p. 725.

    Article  CAS  Google Scholar 

  35. H.P. Yang, R. Yan, H.P. Chen, C.G. Zheng, D.H. Lee, and D.T. Liang, In-depth investigation of biomass pyrolysis based on three major components: Hemicellulose, cellulose and lignin, Energy Fuels, 20(2006), No. 1, p. 388.

    Article  CAS  Google Scholar 

  36. H.P. Yang, R. Yan, H.P. Chen, D.H. Lee, and C.G. Zheng, Characteristics of hemicellulose, cellulose and lignin pyrolysis, Fuel, 86(2007), No. 12–13, p. 1781.

    Article  CAS  Google Scholar 

  37. T. Kan, V. Strezov, and T.J. Evans, Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters, Renewable Sustainable Energy Rev., 57(2016), p. 1126.

    Article  CAS  Google Scholar 

  38. R.K. Mishra and K. Mohanty, Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis, Bioresour. Technol., 251(2018), p. 63.

    Article  CAS  Google Scholar 

  39. A. Demirbaş, Calculation of higher heating values of biomass fuels, Fuel, 76(1997), No. 5, p. 431.

    Article  Google Scholar 

  40. L. Chavez-Guerrero and M. Hinojosa, Bagasse from the mezcal industry as an alternative renewable energy produced in arid lands, Fuel, 89(2010), No. 12, p. 4049.

    Article  CAS  Google Scholar 

  41. S.Y. Luo, C.J. Yi, and Y.M. Zhou, Direct reduction of mixed biomass-Fe2O3 briquettes using biomass-generated syngas, Renewable Energy, 36(2011), No. 12, p. 3332.

    Article  CAS  Google Scholar 

  42. H. Purwanto, T. Shimada, R. Takahashi, and J. Yagi, Reduction rate of cement bonded laterite briquette with CO–CO2 gas, ISIJ Int., 41(2001), p. S31.

    Article  CAS  Google Scholar 

  43. A. Pineau, N. Kanari, and I. Gaballah, Kinetics of reduction of iron oxides by H2: Part I: Low temperature reduction of hematite, Thermochim. Acta, 447(2006), No. 1, p. 89.

    Article  CAS  Google Scholar 

  44. Y. Man, J.X. Feng, F.J. Li, Q. Ge, Y.M. Chen, and J.Z. Zhou, Influence of temperature and time on reduction behavior in iron ore-coal composite pellets, Powder Technol., 256(2014), p. 361.

    Article  CAS  Google Scholar 

  45. J.M. Zeng, R. Xiao, H.Y. Zhang, Y.H. Wang, D.W. Zeng, and Z. Ma, Chemical looping pyrolysis-gasification of biomass for high H2/CO syngas production, Fuel Process. Technol., 168(2017), p. 116.

    Article  CAS  Google Scholar 

  46. A.T. Ubando, W.H. Chen, and H.C. Ong, Iron oxide reduction by graphite and torrefied biomass analyzed by TG-FTIR for mitigating CO2 emissions, Energy, 180(2019), p. 968.

    Article  CAS  Google Scholar 

  47. C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, A.E. Gheribi, K. Hack, I.H. Jung, Y.B. Kang, J. Melançon, A.D. Pelton, S. Petersen, C. Robelin, J. Sangster, P. Spencer, and M.A. Van Ende, FactSage thermochemical software and databases, Calphad, 26(2002), No. 2, p. 189.

    Article  CAS  Google Scholar 

  48. C.K. Gupta, Chemical Metallurgy: Principles and Practice, Wiley-VCH Verlag GmbH & Co. KGaA, 2004.

  49. F. Habashi, Principles of Extractive Metallurgy, CRC Press, 1986.

  50. N. Narçin, S. Aydln, K. Şeşen, and F. Dikeç, Redaction of iron ore pellets with domestic lignite coal in a rotary tube furnace, Int. J. Miner. Process., 43(1995), No. 1–2, p. 49.

    Article  Google Scholar 

  51. R. Merk and C.A. Pickles, Reduction of ilmenite by carbon monoxide, Can. Metall. Q., 27(1988), No. 3, p. 179.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Mario Alberto Sanchez Miranda would like to thank National Science and Technology Council (CONACYT) for the grant No. 665811 awarded to his Master thesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noemí Ortiz Lara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cholico-González, D., Lara, N.O., Miranda, M.A.S. et al. Efficient metallization of magnetite concentrate by reduction with agave bagasse as a source of reducing agents. Int J Miner Metall Mater 28, 603–611 (2021). https://doi.org/10.1007/s12613-020-2079-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2079-z

Keywords

Navigation