Skip to main content
Log in

Alternate second order conic program reformulations for hub location under stochastic demand and congestion

  • Original-Comparative Computational Study
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In this paper, we study the single allocation hub location problem with capacity selection in the presence of congestion at hubs. Accounting for congestion at hubs leads to a non-linear mixed integer program, for which we propose 18 alternate mixed integer second order conic program (MISOCP) based reformulations. Based on our computational studies, we identify the best MISOCP-based reformulation, which turns out to be 20–60 times faster than the state-of-the-art. Using the best MISOCP-based reformulation, we are able to exactly solve instances up to 50 nodes in less than half-an-hour. We also theoretically examine the dimensionality of the second order cones associated with different formulations, based on which their computational performances can be predicted. Our computational results corroborate our theoretical findings. Such insights can be helpful in the generation of efficient MISOCPs for similar classes of problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ahmadi-Javid, A., & Hoseinpour, P. (2017). Convexification of queueing formulas by mixed-integer second-order cone programming: An application to a discrete location problem with congestion. arXiv preprint arXiv:1710.05794.

  • Alkaabneh, F., Diabat, A., & Elhedhli, S. (2019). A Lagrangian heuristic and grasp for the hub-and-spoke network system with economies-of-scale and congestion. Transportation Research Part C: Emerging Technologies, 102, 249–273.

    Article  Google Scholar 

  • Alumur, S., & Kara, B. Y. (2008). Network hub location problems: The state of the art. European Journal of Operational Research, 190(1), 1–21.

    Article  Google Scholar 

  • Atamtürk, A., Berenguer, G., & Shen, Z. J. (2012). A conic integer programming approach to stochastic joint location-inventory problems. Operations Research, 60(2), 366–381.

    Article  Google Scholar 

  • Aykin, T. (1994). Lagrangian relaxation based approaches to capacitated hub-and-spoke network design problem. European Journal of Operational Research, 79(3), 501–523.

    Article  Google Scholar 

  • Azizi, N., Vidyarthi, N., & Chauhan, S. S. (2018). Modelling and analysis of hub-and-spoke networks under stochastic demand and congestion. Annals of Operations Research, 264(1–2), 1–40.

    Article  Google Scholar 

  • Bania, N., Bauer, P. W., & Zlatoper, T. J. (1998). Us air passenger service: A taxonomy of route networks, hub locations, and competition. Transportation Research Part E: Logistics and Transportation Review, 34(1), 53–74.

    Article  Google Scholar 

  • Boland, N., Krishnamoorthy, M., Ernst, A. T., & Ebery, J. (2004). Preprocessing and cutting for multiple allocation hub location problems. European Journal of Operational Research, 155(3), 638–653.

    Article  Google Scholar 

  • Campbell, J. F., & O’Kelly, M. E. (2012). Twenty-five years of hub location research. Transportation Science, 46(2), 153–169.

    Article  Google Scholar 

  • Contreras, I., Cordeau, J. F., & Laporte, G. (2012). Exact solution of large-scale hub location problems with multiple capacity levels. Transportation Science, 46(4), 439–459.

    Article  Google Scholar 

  • Contreras, I., Díaz, J. A., & Fernández, E. (2009). Lagrangean relaxation for the capacitated hub location problem with single assignment. OR Spectrum, 31(3), 483–505.

    Article  Google Scholar 

  • Contreras, I., Díaz, J. A., & Fernández, E. (2011). Branch and price for large-scale capacitated hub location problems with single assignment. INFORMS Journal on Computing, 23(1), 41–55.

    Article  Google Scholar 

  • Correia, I., Nickel, S., & Saldanha-da Gama, F. (2010). Single-assignment hub location problems with multiple capacity levels. Transportation Research Part B: Methodological, 44(8–9), 1047–1066.

    Article  Google Scholar 

  • Correia, I., Nickel, S., & Saldanha-da Gama, F. (2011). Hub and spoke network design with single-assignment, capacity decisions and balancing requirements. Applied Mathematical Modelling, 35(10), 4841–4851.

    Article  Google Scholar 

  • da Graça, C. M., Captivo, M. E., & Clímaco, J. (2008). Capacitated single allocation hub location problema bi-criteria approach. Computers & Operations Research, 35(11), 3671–3695.

    Article  Google Scholar 

  • Dan, T., & Marcotte, P. (2019). Competitive facility location with selfish users and queues. Operations Research, 67(2), 479–497.

    Google Scholar 

  • de Camargo, R. S., de Miranda, J. G., & Ferreira, R. P. (2011). A hybrid outer-approximation/benders decomposition algorithm for the single allocation hub location problem under congestion. Operations Research Letters, 39(5), 329–337.

    Article  Google Scholar 

  • de Camargo, R. S., Miranda, G, Jr., Ferreira, R. P. M., & Luna, H. (2009a). Multiple allocation hub-and-spoke network design under hub congestion. Computers & Operations Research, 36(12), 3097–3106.

    Article  Google Scholar 

  • de Camargo, R. S., Miranda, G, Jr., & Luna, H. (2008). Benders decomposition for the uncapacitated multiple allocation hub location problem. Computers & Operations Research, 35(4), 1047–1064.

    Article  Google Scholar 

  • de Camargo, R. S., de Miranda, J. G., & Luna, H. P. L. (2009b). Benders decomposition for hub location problems with economies of scale. Transportation Science, 43(1), 86–97.

    Article  Google Scholar 

  • Dolan, E. D., & Moré, J. J. (2002). Benchmarking optimization software with performance profiles. Mathematical Programming, 91(2), 201–213.

    Article  Google Scholar 

  • Ebery, J., Krishnamoorthy, M., Ernst, A., & Boland, N. (2000). The capacitated multiple allocation hub location problem: Formulations and algorithms. European Journal of Operational Research, 120(3), 614–631.

    Article  Google Scholar 

  • Elhedhli, S., & Hu, F. X. (2005). Hub-and-spoke network design with congestion. Computers & Operations Research, 32(6), 1615–1632.

    Article  Google Scholar 

  • Elhedhli, S., & Wu, H. (2010). A lagrangean heuristic for hub-and-spoke system design with capacity selection and congestion. INFORMS Journal on Computing, 22(2), 282–296.

    Article  Google Scholar 

  • Ernst, A. T., & Krishnamoorthy, M. (1996). Efficient algorithms for the uncapacitated single allocation p-hub median problem. Location Science, 4(3), 139–154.

    Article  Google Scholar 

  • Ernst, A. T., & Krishnamoorthy, M. (1998). An exact solution approach based on shortest-paths for p-hub median problems. INFORMS Journal on Computing, 10(2), 149–162.

    Article  Google Scholar 

  • Ernst, A. T., & Krishnamoorthy, M. (1999). Solution algorithms for the capacitated single allocation hub location problem. Annals of Operations Research, 86, 141–159.

    Article  Google Scholar 

  • Farahani, R. Z., Hekmatfar, M., Arabani, A. B., & Nikbakhsh, E. (2013). Hub location problems: A review of models, classification, solution techniques, and applications. Computers & Industrial Engineering, 64(4), 1096–1109.

    Article  Google Scholar 

  • Günlük, O., & Linderoth, J. (2012). Perspective reformulation and applications. In Mixed integer nonlinear programming, Springer, pp. 61–89.

  • Hasanzadeh, H., Bashiri, M., & Amiri, A. (2018). A new approach to optimize a hub covering location problem with a queue estimation component using genetic programming. Soft Computing, 22(3), 949–961.

    Article  Google Scholar 

  • Jayaswal, S., & Vidyarthi, N. (2013). Capacitated multiple allocation hub location with service level constraints for multiple consignment classes. Technical report, Indian Institute of Management Ahmedabad, Research and Publication Department.

  • Jayaswal, S., & Jewkes, E. M. (2016). Price and lead time differentiation, capacity strategy and market competition. International Journal of Production Research, 54(9), 2791–2806.

    Article  Google Scholar 

  • Jayaswal, S., Jewkes, E., & Ray, S. (2011). Product differentiation and operations strategy in a capacitated environment. European Journal of Operational Research, 210(3), 716–728.

    Article  Google Scholar 

  • Jayaswal, S., Vidyarthi, N., & Das, S. (2017). A cutting plane approach to combinatorial bandwidth packing problem with queuing delays. Optimization Letters, 11(1), 225–239.

    Article  Google Scholar 

  • Kara, B. Y., & Tansel, B. C. (2000). On the single-assignment p-hub center problem. European Journal of Operational Research, 125(3), 648–655.

    Article  Google Scholar 

  • Kian, R., & Kargar, K. (2016). Comparison of the formulations for a hub-and-spoke network design problem under congestion. Computers & Industrial Engineering, 101, 504–512.

    Article  Google Scholar 

  • Klincewicz, J. G. (1998). Hub location in backbone/tributary network design: A review. Location Science, 6(1–4), 307–335.

    Article  Google Scholar 

  • Lüer-Villagra, A., & Marianov, V. (2013). A competitive hub location and pricing problem. European Journal of Operational Research, 231(3), 734–744.

    Article  Google Scholar 

  • Marianov, V., & Serra, D. (2003). Location models for airline hubs behaving as m/d/c queues. Computers & Operations Research, 30(7), 983–1003.

    Article  Google Scholar 

  • Marianov, V., Serra, D., & ReVelle, C. (1999). Location of hubs in a competitive environment. European Journal of Operational Research, 114(2), 363–371.

    Article  Google Scholar 

  • Marín, A. (2005). Formulating and solving splittable capacitated multiple allocation hub location problems. Computers & Operations Research, 32(12), 3093–3109.

    Article  Google Scholar 

  • Martín, J. C., & Román, C. (2003). Hub location in the south-Atlantic airline market: A spatial competition game. Transportation Research Part A: Policy and Practice, 37(10), 865–888.

    Google Scholar 

  • McShan, S., & Windle, R. (1989). The implications of hub-and-spoke routing for airline costs. Logistics and Transportation Review, 25(3), 209.

    Google Scholar 

  • Meier, J. F., & Clausen, U. (2017). Solving single allocation hub location problems on Euclidean data. Transportation Science, 52(5), 1141–1155.

    Article  Google Scholar 

  • O’kelly, M. E. (1986). The location of interacting hub facilities. Transportation Science, 20(2), 92–106.

    Article  Google Scholar 

  • O’kelly, M. E. (1987). A quadratic integer program for the location of interacting hub facilities. European Journal of Operational Research, 32(3), 393–404.

    Article  Google Scholar 

  • Oum, T. H., Zhang, A., & Zhang, Y. (1995). Airline network rivalry. Canadian Journal of Economics, 28, 836–857.

    Article  Google Scholar 

  • Rodríguez-Martín, I., & Salazar-González, J. J. (2008). Solving a capacitated hub location problem. European Journal of Operational Research, 184(2), 468–479.

    Article  Google Scholar 

  • Skorin-Kapov, D., Skorin-Kapov, J., & O’Kelly, M. (1996). Tight linear programming relaxations of uncapacitated p-hub median problems. European Journal of Operational Research, 94(3), 582–593.

    Article  Google Scholar 

  • Tiwari, R., Jayaswal, S., & Sinha, A. (2020). Alternate solution approaches for competitive hub location problems. European Journal of Operational Research, 290, 68–80.

    Article  Google Scholar 

  • Toh, R. S., & Higgins, R. G. (1985). The impact of hub and spoke network centralization and route monopoly on domestic airline profitability. Transportation Journal, 24, 16–27.

    Google Scholar 

  • Vidyarthi, N., Jayaswal, S., Chetty, V. B. T., et al. (2013). Exact solution to bandwidth packing problem with queuing delays. Indian Institute of Management.

  • Vidyarthi, N., & Jayaswal, S. (2014). Efficient solution of a class of location-allocation problems with stochastic demand and congestion. Computers & Operations Research, 48, 20–30.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sneha Dhyani Bhatt.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

SHLPCC for the SK-based model

For SK-based model, the flow variables \(x_{ikm}\) are replaced by path variables \(x_{ijkm}\), where \(x_{ijkm} = {\left\{ \begin{array}{ll} 1, &{}\text {if flows from }i\text { to }j\text { are routed via hub }k\text { and }m \\ 0, &{}\text {otherwise}. \end{array}\right. }\)

Definition of other variables and parameters remain same.

1.1 Two-subscripted capacity allocation variable

$$\begin{aligned} \mathbf \small [SK-2s] \quad \text {min} \quad&{\sum _{i}\sum _{j}\sum _{k}\sum _{m}} F_{ijkm}x_{ijkm} + \sum _{k}\sum _{l} Q^l_{k}y_{kl} + \theta \sum _{k} 1/2 {{E}[N_{k}(y,z)]} \nonumber \\ \text {s.t.} \quad&(3){-}(5), (7){-}(10), (12), (14){-}(21)\nonumber \\&\sum _{m}x_{ijkm} =z_{ik} \qquad \qquad \forall i,j,k \end{aligned}$$
(76)
$$\begin{aligned}&\sum _{k}x_{ijkm} =z_{jm} \qquad \qquad \forall i,j,m \end{aligned}$$
(77)
$$\begin{aligned}&x_{ijkm} \in \{0,1\} \qquad \qquad \forall i,j,k,m,l \end{aligned}$$
(78)

Here, \(F_{ijkm}=W_{ij}( \chi d_{ik}+\alpha d_{km}+ \delta d_{mj})\) is the total flow through path \(i-j-k-m\). (76) and (77) connect the assignment variables and path variables.

[SK-MISOCP1] (3)–(5), (7), (9)–(10), (12), (14)-(21), (37)–(39), (76)–(78)

[SK-MISOCP2] (3)–(5), (7), (9)–(10), (12), (14)–(21), (41)–(44), (76)–(78).

[SK-MISOCP3] (3)–(5), (7), (9)–(10), (12), (14)–(21), (41)–(43), (46), (76)–(78).

[SK-MISOCP4] (3)–(5), (7), (9)–(10), (12), (14)–(21), (41)–(43), (47), (49), (50), (76)–(78).

[SK-MISOCP5] (3)–(5), (7)–(10), (12), (14)-(21), (52)–(54), (56), (76)–(78).

Table 4 Computation time for N = 25 for CAB dataset

1.2 Three-subscripted capacity allocation variable

$$\begin{aligned} \mathbf \small [SK-3s] \quad \text {min} \quad&{\sum _{i}\sum _{j}\sum _{k}\sum _{m}} F_{ijkm}x_{ijkm} + \sum _{k}\sum _{l} Q^l_{k}t^{l}_{kk} + \theta {{E}[N_{k}]} \nonumber \\ \text {s.t.} \quad&(26)-(28), (30), (32),(34) \nonumber \\&\sum _{m}x_{ijkm} =\sum _{l}t^{l}_{ik} \qquad \qquad \forall i,j,k \end{aligned}$$
(79)
$$\begin{aligned}&\sum _{k}x_{ijkm} =\sum _{l}t^{l}_{jm} \qquad \qquad \forall i,j,m \end{aligned}$$
(80)
$$\begin{aligned}&x_{ijkm} \in \{0,1\} \qquad \qquad \forall i,j,k,m,l \end{aligned}$$
(81)
[SK-MISOCP6] :

(26)–(28), (30), (32),(34), (58)–(60), (79)–(81).

[SK-MISOCP7] :

(26)–(28), (30), (32),(34), (62)–(64), (79)–(81).

[SK-MISOCP8] :

(26)–(28), (30), (32),(34),(66)–(70), (79)–(81).

[SK-MISOCP9] :

(26)–(28), (30), (32),(34), (71)–(73), (75), (79)–(81).

OA method

1.1 EK-OA-2s: OA-based method for EK-2s

The auxillary variable \(L_{kl}\) and \(\rho _{k}\) which were defined as \(L_{kl} = \rho _{k} y_{kl}\) and \(\rho _{k}=\frac{ s_{k}}{1+s{k}}\), imply

$$\begin{aligned} L_{kl} = {\left\{ \begin{array}{ll} 0, &{} \text { if }y_{kl} =0 \\ \frac{s_{k}}{1+s_{k}}, &{} \text { if }y_{kl}=1. \end{array}\right. } \end{aligned}$$
(82)

Also, earlier results, \(\sum _{l} L_{kl} =\rho _{k} \quad \forall k\) , \(L_{kl} \le y_{kl} \quad \forall k,l\) and \({\sum _{i}\sum _{j} W_{ij} z_{ik}} = \sum _{l} \gamma ^l_{k} L_{kl}\), remain. The function, \(L_{kl} = \frac{s_{k}}{(1+s_{k})}\) is a concave function which can be approximated with piecewise linear functions that are tangent to the function \(L_{kl}\) . The method chooses the minimum of these tangents at points \( s^h_{k} \quad \forall h \in H , {k} \, \in {N} , \,{{l}} \in {L}\). The cuts are given by

$$\begin{aligned}&L_{kl} = \text {min}_{h \in H} \Bigg \{ \frac{1}{(1+s^h_{k})^2} s_{k} + \bigg ( \frac{s^h_{k}}{1+s^h_{k}} \bigg )^2 \Bigg \} \nonumber \\&\quad \Longleftrightarrow L_{kl} \le \frac{1}{(1+s^h_{k})^2} s_{k} + \bigg ( \frac{s^h_{k}}{1+s^h_{k}} \bigg )^2 \quad \forall k \in N , l \in L, h \in H \end{aligned}$$
(83)

In the OA-based method proposed by Elhedhli and Hu (2005), for every \(k-l\) pair, the non linear congestion term is approximated with tangents (cuts), given by (82), at points \(s_{k}^h\) (set at \(h_{0}\) initially). At every iteration a relaxed mixed integer linear problem is solved. The solution of which not only gives the lower bound but also supplies information for the next cut. Also, this solution is feasible for the main problem thus giving the upper bound. The algorithm terminates when both upper and lower bounds are \(\epsilon \) (or less) away from each other where \(\epsilon \ge 0\). Günlük and Linderoth (2012) proposed perspective counterpart for (83) as

$$\begin{aligned} L_{kl} = \frac{s_{k}}{1+s_{k}/y_{kl}}{k} \, \in {N} , \,{{l}} \in {L} \end{aligned}$$

and the corresponding perspective cut at \(s_{k}^h\) as

$$\begin{aligned} L_{kl} \le \frac{1}{(1+s^h_{k})^2} s_{k} + \bigg ( \frac{s^h_{k}}{1+s^h_{k}} \bigg )^2 y_{kl} , \quad \forall k, l \end{aligned}$$
(84)

The formulation for the EK-OA-2s is as follows:

$$\begin{aligned}&\mathbf [EK-OA-2s] \\&\text {min} \quad {\sum _{i}\sum _{k}} C_{ik}(\chi O_{i}+\delta D_{i})z_{ik}+\sum _{i}\sum _{k}\sum _{m} \alpha C_{km} x_{ikm} \\&\quad + \sum _{k}\sum _{l} Q^l_{k}y_{kl} + \theta /2 \sum _{k} \left\{ s_{k} + \rho _{k} +\sum _{l}c^2_{kl} \big ( V_{kl} -L_{kl} \big )\right\} \\&\quad \text {s.t.} \quad (3){-}(21), (84) \end{aligned}$$

Algorithm for the above discussed OA-based method is as follows:

figure a

1.2 EK-OA-3s: OA-based method for EK-3s

For formulations with \(t^{l}_{ik}\), we had objective function as

$$\begin{aligned}&\text {min} \quad \left( {\sum _{i}\sum _{k}} C_{ik}(\chi O_{i}+\delta D_{i}) \sum _{l}t^l_{ik}\right) +\sum _{i}\sum _{k}\sum _{m} \alpha C_{km} x_{ikm}+ \sum _{k}\sum _{l} Q^l_{k}t^l_{kk} \\&\quad + \theta \sum _{k} \sum _{l} 1/2 \left\{ \left( 1+c^2_{kl} \right) \frac{\sum _{i}\sum _{j} W_{ij} t^l_{ik}}{\left( \gamma ^l_{k} - \sum _{i}\sum _{j} W_{ij} t^l_{ik}\right) }+ \left( 1-c^2_{kl} \right) \frac{\sum _{i}\sum _{j} W_{ij} t^l_{ik}}{\gamma ^l_{k}}\right\} \end{aligned}$$

We introduce variable \(\rho _{kl}\) and \(s_{kl}\) such that

$$\begin{aligned}&\frac{\sum _{i}\sum _{j} W_{ij} t^l_{ik}}{\gamma ^l_{k}} \le \rho _{kl} \qquad \quad \forall k,l \end{aligned}$$
(85)
$$\begin{aligned}&\frac{\sum _{i}\sum _{j} W_{ij} t^l_{ik}}{\gamma ^l_{k} - \sum _{i}\sum _{j} W_{ij} t^l_{ik}} \le s_{kl} \quad \forall k,l \end{aligned}$$
(86)

\(\rho _{kl}\) and \(s_{kl}\) are related as

$$\begin{aligned} \rho _{kl} = \frac{s_{kl}}{1+s_{kl}} \quad \forall k,l \end{aligned}$$

which is non-linear concave function and can be approximated using tangent hyperplanes as discussed in the previous section. For perspective reformulation, we introduce the following constraint

$$\begin{aligned} \rho _{kl} \le t^{l}_{kk} \end{aligned}$$
(87)

to the following equivalent perspective form

$$\begin{aligned} \rho _{kl} = \frac{s_{kl}}{1+(s_{kl}/t^{l}_{kk})} \end{aligned}$$
(88)

By following logic similar to (83), we have perspective cuts as

$$\begin{aligned} \rho _{kl} \le \displaystyle \frac{1}{(1+s^h_{kl})^2} s_{kl} + \displaystyle \frac{(s^h_{kl})^2}{(1+s^h_{kl})^2} t^{l}_{kk} , \quad \forall k,l \end{aligned}$$
(89)

The overall formulation for the approximation method is as follows:

$$\begin{aligned}&\mathbf [EK-OA-3s] \\&\text {min} {\sum _{i}\sum _{k}} C_{ik}(\chi O_{i}+\delta D_{i}) \sum _{l}t^l_{ik})+\sum _{i}\sum _{k}\sum _{m} \alpha C_{km} x_{ikm}+ \sum _{k}\sum _{l} Q^l_{k}t^l_{kk} \\&\quad + \theta \sum _{k} \sum _{l} 1/2 \Bigg \{ \Big (1+c^2_{kl} \Big ) s_{kl} + \Big (1-c^2_{kl} \Big ) \rho _{kl} \Bigg \}\\&\quad \text {s.t.} \quad (26)-(34), (87), (89) \end{aligned}$$

Algorithm for the above discussed OA-based method is as follows:

figure b
Table 5 Comparison of EK-MISOCPs against EK-OA-2s and EK-OA-3s for N = 10 (CAB dataset)
Table 6 Comparison of EK-MISOCPs against EK-OA-2s and EK-OA-3s for N = 15 (CAB dataset)
Table 7 Comparison of EK-MISOCPs against EK-OA-2s and EK-OA-3s for N = 20 (CAB dataset)
Table 8 Comparison of EK-MISOCPs against EK-OA-2s and EK-OA-3s for N = 25 (CAB dataset)

Performance profile for coefficient of variation (c), and unit congestion cost \(\theta \) for CAB dataset

Fig. 2
figure 2

Performance profile of EK-MISOCPs and EK-OA-based method for \(\theta \)= \(\{20, 50\}\)

Fig. 3
figure 3

Performance profile of EK-MISOCPs and EK-OA-based method for \(\{c= 0, 1, 2\}\)

Table 9 Comparison among EK-MISOCP4, 5, 6 and 9 for \(|\mathbf {N}|=\mathbf {25}\) (AP dataset)
Table 10 Comparison among EK-MISOCP4, 5, 6 and 9 for \(|\mathbf {N}|=\mathbf {50}\) (AP dataset)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhyani Bhatt, S., Jayaswal, S., Sinha, A. et al. Alternate second order conic program reformulations for hub location under stochastic demand and congestion. Ann Oper Res 304, 481–527 (2021). https://doi.org/10.1007/s10479-021-03993-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-021-03993-6

Keywords

Navigation