Skip to main content
Log in

Enhanced Fracture Resistance Induced by Coupling Multiple Degrees of Freedom in Elastic Wave Metamaterials with Local Resonators

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

In this study, the dynamic effective parameters and crack arrest behavior of locally resonant metamaterials with multiple degrees of freedom are investigated. Based on the Wiener-Hopf method, the energy release ratio which characterizes the crack splitting resistance is derived, and the influences of the material parameters are discussed. In comparison with the monoatomic lattice chain and locally resonant metamaterials composed of unit cells with a single degree of freedom, this new periodic structure with coupling multiple degrees of freedom displays some essential features during the crack propagation. The results show that due to the coupling of different displacements, the crack dynamic growth in the elastic wave metamaterials exhibit a lower energy release ratio, which indicates a better fracture resistance and arrest property. The present work can be expected to provide a way to improve the ability to resist crack propagation of advanced materials and structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Madeo, A., Collet, M., Miniaci, M., Billon, K., Ouisse, M., Neff, P.: Modeling phononic crystals via the weighted relaxed micromorphic model with free and gradient micro-inertia. J. Elast. 130, 59–83 (2018)

    Article  MathSciNet  Google Scholar 

  2. Liu, C., Reina, C.: Broadband locally resonant metamaterials with graded hierarchical architecture. J. Appl. Phys. 123, 095108 (2018)

    Article  ADS  Google Scholar 

  3. Shi, J., Akbarzadeh, A.H.: 3D hierarchical lattice ferroelectric metamaterials. Int. J. Eng. Sci. 149, 103247 (2020)

    Article  MathSciNet  Google Scholar 

  4. De Miguel-Hernandez, J., Hoyland, R.J., Sosa-Cabrera, D., Deviaene, S., Fuerte-Rodriguez, P.A., Gonzalez-Carretero, E.D., Vega-Moreno, A.: Manufacturing of 3D-metallic electromagnetic metamaterials for feedhorns used in radioastronomy and satellite communications. Mech. Mater. 139, 103195 (2019)

    Article  Google Scholar 

  5. Oh, J.H., Kwon, Y.E., Lee, H.J., Kim, Y.Y.: Elastic metamaterials for independent realization of negativity in density and stiffness. Sci. Rep. 6, 23630 (2016)

    Article  ADS  Google Scholar 

  6. Barnwell, E.G., Parnell, W.J., Abrahams, I.D.: Antiplane elastic wave propagation in pre-stressed periodic structures; tuning, band gap switching and invariance. Wave Motion 63, 98–110 (2016)

    Article  MathSciNet  Google Scholar 

  7. Comi, C., Marigo, J.J.: Homogenization approach and Bloch-Floquet theory for band-gap prediction in 2D locally resonant metamaterials. J. Elast. 139, 61–90 (2020)

    Article  MathSciNet  Google Scholar 

  8. D’Agostino, M.V., Barbagallo, G., Ghiba, I.D., Eidel, B., Neff, P., Madeo, A.: Effective description of anisotropic wave dispersion in mechanical band-gap metamaterials via the relaxed micromorphic model. J. Elast. 139, 299–329 (2020)

    Article  MathSciNet  Google Scholar 

  9. Parnell, W.J., Shearer, T.: Antiplane elastic wave cloaking using metamaterials, homogenization and hyperelasticity. Wave Motion 50, 1140–1152 (2013)

    Article  MathSciNet  Google Scholar 

  10. Smith, D., Pendry, J.B., Wiltshire, M.C.K.: Metamaterials and negative refractive index. Science 305, 788–792 (2004)

    Article  ADS  Google Scholar 

  11. Cheng, X.X., Chen, H.S., Ran, L.X., Wu, B.I., Grzegorczyk, T.M., Kong, J.A.: Negative refraction and cross polarization effects in metamaterial realized with bianisotropic S-ring resonator. Phys. Rev. B 76, 024402 (2007)

    Article  ADS  Google Scholar 

  12. Wang, Y.Z., Li, F.M., Wang, Y.S.: Active feedback control of elastic wave metamaterials. J. Intell. Mater. Syst. Struct. 28, 2110–2116 (2017)

    Article  Google Scholar 

  13. Zivieri, R., Garesci, F., Azzerboni, B., Chiappini, M., Finocchio, G.: Nonlinear dispersion relation in anharmonic periodic mass-spring and mass-in-mass systems. J. Sound Vib. 462, 114929 (2018)

    Article  Google Scholar 

  14. Huang, G.L., Sun, C.T.: Band gaps in a multiresonator acoustic metamaterial. ASME J. Vib. Acoust. 132, 031003 (2010)

    Article  Google Scholar 

  15. Huang, H.H., Sun, C.T.: Locally resonant acoustic metamaterials with 2D anisotropic effective mass density. Philos. Mag. 91, 981–996 (2011)

    Article  ADS  Google Scholar 

  16. Mishuris, G.S., Movchan, A.B., Slepyan, L.I.: Waves in elastic bodies with discrete and continuous dynamic microstructure. Philos. Trans. R. Soc. A 378, 20190313 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  17. Milton, G.W., Willis, J.R.: On modifications of Newton’s second law and linear continuum elastodynamics. Proc. R. Soc. A 463, 855–880 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  18. Mishuris, G.S., Movchan, A.B., Slepyan, L.I.: Localised knife waves in a structured interface. J. Mech. Phys. Solids 57, 1958–1979 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  19. Gorbushin, N., Mishuris, G.: Dynamic fracture of a discrete media under moving load. Int. J. Solids Struct. 130, 280–295 (2018)

    Article  Google Scholar 

  20. Kessler, D.A.: Arrested cracks in nonlinear lattice models of brittle fracture. Phys. Rev. E 60, 7569–7571 (1999)

    Article  ADS  Google Scholar 

  21. Astrom, J., Timonen, J.: Crack bifurcations in a strained lattice. Phys. Rev. B (1996). https://doi.org/10.1103/PhysRevB.54.R9585

    Article  Google Scholar 

  22. Marder, M., Gross, S.: Origin of crack-tip instabilities. J. Mech. Phys. Solids 43, 1–48 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  23. Fineberg, J., Marder, M.: Instability in dynamic fracture. Phys. Rep. 313, 1–108 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  24. Fineberg, J., Gross, S.P., Marder, M., Swinney, H.L.: Instability in dynamic fracture. Phys. Rev. Lett. 67, 457–460 (1991)

    Article  ADS  Google Scholar 

  25. Guozden, T.M., Jagla, E.A., Marder, M.: Supersonic cracks in lattice models. Int. J. Fract. 162, 107–125 (2010)

    Article  Google Scholar 

  26. Slepyan, L.I., Ayzenberg-Stepanenko, M.V.: Localized transition waves in bistable-bond lattices. J. Mech. Phys. Solids 52, 1447–1479 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  27. Cherkaev, A., Cherkaev, E., Slepyan, L.: Transition waves in bistable structures. I. Delocalization of damage. J. Mech. Phys. Solids 53, 383–405 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  28. Slepyan, L., Cherkaev, A., Cherkaev, E.: Transition waves in bistable structures. II. Analytical solution: wave speed and energy dissipation. J. Mech. Phys. Solids 53, 407–436 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  29. Puglisi, G., Truskinovsky, L.: Mechanics of a discrete chain with bi-stable elements. J. Mech. Phys. Solids 48, 1–27 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  30. Slepyan, L.I.: Brittle failure waves. Mech. Solids 3, 202–204 (1968)

    Google Scholar 

  31. Slepyan, L.I.: Models in the theory of brittle fracture waves. Mech. Solids 12, 170–172 (1977)

    Google Scholar 

  32. Slepyan, L.I., Troyankina, L.V.: Fracture wave in a chain structure. J. Appl. Mech. Tech. Phys. 25, 921–927 (1984)

    Article  ADS  Google Scholar 

  33. Nieves, M.J., Mishuris, G.S., Slepyan, L.I.: Analysis of dynamic damage propagation in discrete beam structures. Int. J. Solids Struct. 97–98, 699–713 (2016)

    Article  Google Scholar 

  34. Nieves, M.J., Mishuris, G.S., Slepyan, L.I.: Transient wave in a transformable periodic flexural structure. Int. J. Solids Struct. 112, 185–208 (2016)

    Article  Google Scholar 

  35. Mishuris, G.S., Movchan, A.B., Slepyan, L.I.: Dynamics of a bridged crack in a discrete lattice. Q. J. Mech. Appl. Math. 61, 151–160 (2008)

    Article  MathSciNet  Google Scholar 

  36. Slepyan, L.I.: Models and Phenomena in Fracture Mechanics. Springer, Berlin (2002)

    Book  Google Scholar 

  37. Garau, M., Nieves, M.J., Carta, G., Brun, M.: Transient response of a gyro-elastic structured medium: unidirectional waveforms and cloaking. Int. J. Eng. Sci. 143, 115–141 (2019)

    Article  MathSciNet  Google Scholar 

  38. Pavlov, I.S., Potapov, A.I., Maugin, G.A.: A 2d granular medium with rotating particles. Int. J. Solids Struct. 43, 6194–6207 (2006)

    Article  Google Scholar 

  39. Suiker, A.S.J., Metrikine, A.V., Borst, R.D.: Comparison of wave propagation characteristics of the Cosserat continuum model and corresponding discrete lattice models. Int. J. Solids Struct. 38, 1563–1583 (2001)

    Article  Google Scholar 

  40. Huang, K.X., Shui, G.S., Wang, Y.Z., Wang, Y.S.: Meta-arrest of a fast propagating crack in elastic wave metamaterials with local resonators. Mech. Mater. 148, 103497 (2020)

    Article  Google Scholar 

  41. Berinskii, I.E., Slepyan, L.I.: How a dissimilar-chain system is splitting: quasi-static, subsonic and supersonic regimes. J. Mech. Phys. Solids 107, 509–524 (2017)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors wish to express gratitude for the support provided by the National Natural Science Foundation of China (Grant Nos. 11922209, 11991031 and 12021002), the Joint Sino-German Research Project (Grant No. GZ 1355) and the German Research Foundation (DFG, Grant No. ZH 15/27-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Ze Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The elements of matrix \(\mathbf{K}\)s1 in Eq. (1) are expressed as:

$$ \mathbf{K}_{\mathrm{s}1}\!=\! \left [\!\! \textstyle\begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c} K_{\mathrm{s}1}^{\left ( 1,1 \right )} & 0 & K_{\mathrm{s}1}^{\left ( 1,3 \right )} & K_{\mathrm{s}1}^{\left ( 1,4 \right )} & 0 & 0 & K_{\mathrm{s}1}^{\left ( 1,7 \right )} & 0 & K_{\mathrm{s}1}^{\left ( 1,9 \right )} & 0 & 0 & 0 \\ 0 & K_{\mathrm{s}1}^{\left ( 2,2 \right )} & K_{\mathrm{s}1}^{\left ( 2,3 \right )} & 0 & K_{\mathrm{s}1}^{\left ( 2,5 \right )} & K_{\mathrm{s}1}^{\left ( 2,6 \right )} & 0 & 0 & 0 & 0 & 0 & 0 \\ K_{\mathrm{s}1}^{\left ( 3,1 \right )} & K_{\mathrm{s}1}^{\left ( 3,2 \right )} & K_{\mathrm{s}1}^{\left ( 3,3 \right )} & 0 & K_{\mathrm{s}1}^{\left ( 3,5 \right )} & K_{\mathrm{s}1}^{\left ( 3,6 \right )} & K_{\mathrm{s}1}^{\left ( 3,7 \right )} & 0 & K_{\mathrm{s}1}^{\left ( 3,9 \right )} & 0 & 0 & 0 \\ K_{\mathrm{s}1}^{\left ( 4,1 \right )} & 0 & 0 & K_{\mathrm{s}1}^{\left ( 4,4 \right )} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & K_{\mathrm{s}1}^{\left ( 5,2 \right )} & K_{\mathrm{s}1}^{\left ( 5,3 \right )} & 0 & K_{\mathrm{s}1}^{\left ( 5,5 \right )} & K_{\mathrm{s}1}^{\left ( 5,6 \right )} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & K_{\mathrm{s}1}^{\left ( 6,2 \right )} & K_{\mathrm{s}1}^{\left ( 6,3 \right )} & 0 & K_{\mathrm{s}1}^{\left ( 6,5 \right )} & K_{\mathrm{s}1}^{\left ( 6,6 \right )} & 0 & 0 & 0 & 0 & 0 & 0 \\ K_{\mathrm{s}1}^{\left ( 7,1 \right )} & 0 & K_{\mathrm{s}1}^{\left ( 7,3 \right )} & 0 & 0 & 0 & K_{\mathrm{s}1}^{\left ( 7,7 \right )} & 0 & K_{\mathrm{s}1}^{\left ( 7,9 \right )} & K_{\mathrm{s}1}^{\left ( 7,10 \right )} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & K_{\mathrm{s}1}^{\left ( 8,8 \right )} & K_{\mathrm{s}1}^{\left ( 8,9 \right )} & 0 & K_{\mathrm{s}1}^{\left ( 8,11 \right )} & K_{\mathrm{s}1}^{\left ( 8,12 \right )} \\ K_{\mathrm{s}1}^{\left ( 9,1 \right )} & 0 & K_{\mathrm{s}1}^{\left ( 9,3 \right )} & 0 & 0 & 0 & K_{\mathrm{s}1}^{\left ( 9,7 \right )} & K_{\mathrm{s}1}^{\left ( 9,8 \right )} & K_{\mathrm{s}1}^{\left ( 9,9 \right )} & 0 & K_{\mathrm{s}1}^{\left ( 9,11 \right )} & K_{\mathrm{s}1}^{\left ( 9,12 \right )} \\ 0 & 0 & 0 & 0 & 0 & 0 & K_{\mathrm{s}1}^{\left ( 10,7 \right )} & 0 & 0 & K_{\mathrm{s}1}^{\left ( 10,10 \right )} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & K_{\mathrm{s}1}^{\left ( 11,8 \right )} & K_{\mathrm{s}1}^{\left ( 11,9 \right )} & 0 & K_{\mathrm{s}1}^{\left ( 11,11 \right )} & K_{\mathrm{s}1}^{\left ( 11,12 \right )} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & K_{\mathrm{s}1}^{\left ( 12,8 \right )} & K_{\mathrm{s}1}^{\left ( 12,9 \right )} & 0 & K_{\mathrm{s}1}^{\left ( 12,11 \right )} & K_{\mathrm{s}1}^{\left ( 12,12 \right )} \end{array}\displaystyle \!\! \right ]\!, $$
(A.1)

where

$$ K_{\mathrm{s}1}^{\left ( 1,1 \right )} = K_{\mathrm{s}1}^{\left ( 7,7 \right )} = 2k_{\mathrm{n}1} + k_{\mathrm{n}2} + k_{\mathrm{s}3}, $$
(A.2)
$$\begin{aligned} K_{\mathrm{s}1}^{\left ( 3,9 \right )} =& K_{\mathrm{s}1}^{\left ( 9,3 \right )} = \frac{a}{2}K_{\mathrm{s}1}^{\left ( 3,7 \right )} = \frac{a}{2}K_{\mathrm{s}1}^{\left ( 7,3 \right )} = \frac{a}{2}K_{\mathrm{s}1}^{\left ( 7,9 \right )} = \frac{a}{2}K_{\mathrm{s}1}^{\left ( 9,7 \right )} = - \frac{a}{2}K_{\mathrm{s}1}^{\left ( 1,3 \right )} = - \frac{a}{2}K_{\mathrm{s}1}^{\left ( 3,1 \right )} \\ =& - \frac{a}{2}K_{\mathrm{s}1}^{\left ( 1,9 \right )} = - \frac{a}{2}K_{\mathrm{s}1}^{\left ( 9,1 \right )} = - \frac{a^{2}}{4}K_{\mathrm{s}1}^{\left ( 1,7 \right )} = - \frac{a^{2}}{4}K_{\mathrm{s}1}^{\left ( 7,1 \right )} = \frac{k_{\mathrm{s}3}a^{2}}{4}, \end{aligned}$$
(A.3)
$$ K_{\mathrm{s}1}^{\left ( 4,4 \right )} = K_{\mathrm{s}1}^{\left ( 10,10 \right )} = - K_{\mathrm{s}1}^{\left ( 1,4 \right )} = - K_{\mathrm{s}1}^{\left ( 4,1 \right )} = - K_{\mathrm{s}1}^{\left ( 7,10 \right )} = - K_{\mathrm{s}1}^{\left ( 10,7 \right )} = k_{\mathrm{n}2}, $$
(A.4)
$$ K_{\mathrm{s}1}^{\left ( 2,2 \right )} = K_{\mathrm{s}1}^{\left ( 8,8 \right )} = 2k_{\mathrm{s}1} + k_{\mathrm{s}2}, $$
(A.5)
$$ K_{\mathrm{s}1}^{\left ( 6,6 \right )} = K_{\mathrm{s}1}^{\left ( 12,12 \right )} = - K_{\mathrm{s}1}^{\left ( 3,6 \right )} = - K_{\mathrm{s}1}^{\left ( 6,3 \right )} = - K_{\mathrm{s}1}^{\left ( 12,9 \right )} = - K_{\mathrm{s}1}^{\left ( 9,12 \right )} = k_{\mathrm{r}2} + \frac{k_{\mathrm{s}2}r^{2}}{4}, $$
(A.6)
$$\begin{aligned} K_{\mathrm{s}1}^{\left ( 2,3 \right )} =& K_{\mathrm{s}1}^{\left ( 3,2 \right )} = K_{\mathrm{s}1}^{\left ( 5,6 \right )} = K_{\mathrm{s}1}^{\left ( 6,5 \right )} = K_{\mathrm{s}1}^{\left ( 8,9 \right )} = K_{\mathrm{s}1}^{\left ( 9,8 \right )} = K_{\mathrm{s}1}^{\left ( 12,11 \right )} = K_{\mathrm{s}1}^{\left ( 11,12 \right )} = - K_{\mathrm{s}1}^{\left ( 2,6 \right )} \\ =& - K_{\mathrm{s}1}^{\left ( 6,2 \right )} = - K_{\mathrm{s}1}^{\left ( 3,5 \right )} = - K_{\mathrm{s}1}^{\left ( 5,3 \right )} = - K_{\mathrm{s}1}^{\left ( 8,12 \right )} = - K_{\mathrm{s}1}^{\left ( 12,8 \right )} = - K_{\mathrm{s}1}^{\left ( 9,11 \right )} = - K_{\mathrm{s}1}^{\left ( 11,9 \right )} \\ =& \frac{r}{2}K_{\mathrm{s}1}^{\left ( 5,5 \right )} = \frac{r}{2}K_{\mathrm{s}1}^{\left ( 11,11 \right )} = - \frac{r}{2}K_{\mathrm{s}1}^{\left ( 2,5 \right )} = - \frac{r}{2}K_{\mathrm{s}1}^{\left ( 5,2 \right )} \\ =& - \frac{r}{2}K_{\mathrm{s}1}^{\left ( 8,11 \right )} = - \frac{r}{2}K_{\mathrm{s}1}^{\left ( 11,8 \right )} = \frac{k_{\mathrm{s}2}r}{2}, \end{aligned}$$
(A.7)
$$ K_{\mathrm{s}1}^{\left ( 3,3 \right )} = K_{\mathrm{s}1}^{\left ( 9,9 \right )} = 2k_{\mathrm{r}1} + k_{\mathrm{r}2} + \frac{k_{\mathrm{s}1}a^{2}}{2} + \frac{k_{\mathrm{s}2}r^{2}}{4} + \frac{k_{\mathrm{s}3}a^{2}}{4}. $$
(A.8)

Appendix B

The elements of matrix \(\mathbf{K}\)s2 in Eq. (1) are expressed as:

$$ \mathbf{K}_{\mathrm{s}2} = \left [ \textstyle\begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c} K_{\mathrm{s}2}^{\left ( 1,1 \right )} & K_{\mathrm{s}2}^{\left ( 1,1 \right )} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & K_{\mathrm{s}2}^{\left ( 2,3 \right )} & K_{\mathrm{s}2}^{\left ( 2,4 \right )} & K_{\mathrm{s}2}^{\left ( 2,5 \right )} & K_{\mathrm{s}2}^{\left ( 2,6 \right )} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & K_{\mathrm{s}2}^{\left ( 3,3 \right )} & K_{\mathrm{s}2}^{\left ( 3,4 \right )} & K_{\mathrm{s}2}^{\left ( 3,5 \right )} & K_{\mathrm{s}2}^{\left ( 3,6 \right )} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & K_{\mathrm{s}2}^{\left ( 7,7 \right )} & K_{\mathrm{s}2}^{\left ( 7,8 \right )} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & K_{\mathrm{s}2}^{\left ( 8,9 \right )} & K_{\mathrm{s}2}^{\left ( 8,10 \right )} & K_{\mathrm{s}2}^{\left ( 8,11 \right )} & K_{\mathrm{s}2}^{\left ( 8,12 \right )} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & K_{\mathrm{s}2}^{\left ( 9,9 \right )} & K_{\mathrm{s}2}^{\left ( 9,10 \right )} & K_{\mathrm{s}2}^{\left ( 9,11 \right )} & K_{\mathrm{s}2}^{\left ( 9,12 \right )} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{array}\displaystyle \right ], $$
(B.1)

where

$$ K_{\mathrm{s}2}^{\left ( 1,1 \right )} = K_{\mathrm{s}2}^{\left ( 1,2 \right )} = K_{\mathrm{s}2}^{\left ( 7,7 \right )} = K_{\mathrm{s}2}^{\left ( 7,8 \right )} = - k_{\mathrm{n}1}, $$
(B.2)
$$\begin{aligned} K_{\mathrm{s}2}^{\left ( 2,6 \right )} =& K_{\mathrm{s}2}^{\left ( 3,3 \right )} = K_{\mathrm{s}2}^{\left ( 8,12 \right )} = K_{\mathrm{s}2}^{\left ( 9,9 \right )} = - K_{\mathrm{s}2}^{\left ( 8,11 \right )} = - K_{\mathrm{s}2}^{\left ( 3,4 \right )} = - K_{\mathrm{s}2}^{\left ( 2,5 \right )} = - K_{\mathrm{s}2}^{\left ( 9,10 \right )} = - \frac{a}{2}K_{\mathrm{s}2}^{\left ( 2,3 \right )} \\ =& - \frac{a}{2}K_{\mathrm{s}2}^{\left ( 2,4 \right )} = - \frac{a}{2}K_{\mathrm{s}2}^{\left ( 8,9 \right )} = - \frac{a}{2}K_{\mathrm{s}2}^{\left ( 8,10 \right )} = \frac{k_{\mathrm{s}1}a}{2}, \end{aligned}$$
(B.3)
$$ K_{\mathrm{s}2}^{\left ( 3,5 \right )} = K_{\mathrm{s}2}^{\left ( 3,6 \right )} = K_{\mathrm{s}2}^{\left ( 9,11 \right )} = K_{\mathrm{s}2}^{\left ( 9,12 \right )} = - k_{\mathrm{r}1} + \frac{k_{\mathrm{s}1}a^{2}}{4}. $$
(B.4)

Appendix C

The elements of matrix \(\mathbf{D}\)s1 in Eq. (3) are expressed as:

$$ \mathbf{D}_{\mathrm{s}1}\! =\! \left [\!\! \textstyle\begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c} D_{\mathrm{s}1}^{\left ( 1,1 \right )} & 0 & D_{\mathrm{s}1}^{\left ( 1,3 \right )} & D_{\mathrm{s}1}^{\left ( 1,4 \right )} & 0 & 0 & D_{\mathrm{s}1}^{\left ( 1,7 \right )} & 0 & D_{\mathrm{s}1}^{\left ( 1,9 \right )} & 0 & 0 & 0 \\ 0 & D_{\mathrm{s}1}^{\left ( 2,2 \right )} & D_{\mathrm{s}1}^{\left ( 2,3 \right )} & 0 & D_{\mathrm{s}1}^{\left ( 2,5 \right )} & D_{\mathrm{s}1}^{\left ( 2,6 \right )} & 0 & 0 & 0 & 0 & 0 & 0 \\ D_{\mathrm{s}1}^{\left ( 3,1 \right )} & D_{\mathrm{s}1}^{\left ( 3,2 \right )} & D_{\mathrm{s}1}^{\left ( 3,3 \right )} & 0 & D_{\mathrm{s}1}^{\left ( 3,5 \right )} & D_{\mathrm{s}1}^{\left ( 3,6 \right )} & D_{\mathrm{s}1}^{\left ( 3,7 \right )} & 0 & D_{\mathrm{s}1}^{\left ( 3,9 \right )} & 0 & 0 & 0 \\ D_{\mathrm{s}1}^{\left ( 4,1 \right )} & 0 & 0 & D_{\mathrm{s}1}^{\left ( 4,2 \right )} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & D_{\mathrm{s}1}^{\left ( 5,2 \right )} & D_{\mathrm{s}1}^{\left ( 5,3 \right )} & 0 & D_{\mathrm{s}1}^{\left ( 5,5 \right )} & D_{\mathrm{s}1}^{\left ( 5,6 \right )} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & D_{\mathrm{s}1}^{\left ( 6,2 \right )} & D_{\mathrm{s}1}^{\left ( 6,3 \right )} & 0 & D_{\mathrm{s}1}^{\left ( 6,5 \right )} & D_{\mathrm{s}1}^{\left ( 6,6 \right )} & 0 & 0 & 0 & 0 & 0 & 0 \\ D_{\mathrm{s}1}^{\left ( 7,1 \right )} & 0 & D_{\mathrm{s}1}^{\left ( 7,2 \right )} & 0 & 0 & 0 & D_{\mathrm{s}1}^{\left ( 7,7 \right )} & 0 & D_{\mathrm{s}1}^{\left ( 7,9 \right )} & D_{\mathrm{s}1}^{\left ( 7,10 \right )} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & D_{\mathrm{s}1}^{\left ( 8,8 \right )} & D_{\mathrm{s}1}^{\left ( 8,9 \right )} & 0 & D_{\mathrm{s}1}^{\left ( 8,11 \right )} & D_{\mathrm{s}1}^{\left ( 8,12 \right )} \\ D_{\mathrm{s}1}^{\left ( 9,1 \right )} & 0 & D_{\mathrm{s}1}^{\left ( 9,3 \right )} & 0 & 0 & 0 & D_{\mathrm{s}1}^{\left ( 9,7 \right )} & D_{\mathrm{s}1}^{\left ( 9,8 \right )} & D_{\mathrm{s}1}^{\left ( 9,9 \right )} & 0 & D_{\mathrm{s}1}^{\left ( 9,11 \right )} & D_{\mathrm{s}1}^{\left ( 9,12 \right )} \\ 0 & 0 & 0 & 0 & 0 & 0 & D_{\mathrm{s}1}^{\left ( 10,7 \right )} & 0 & 0 & D_{\mathrm{s}1}^{\left ( 10,10 \right )} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & D_{\mathrm{s}1}^{\left ( 11,8 \right )} & D_{\mathrm{s}1}^{\left ( 11,9 \right )} & 0 & D_{\mathrm{s}1}^{\left ( 11,11 \right )} & D_{\mathrm{s}1}^{\left ( 11,12 \right )} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & D_{\mathrm{s}1}^{\left ( 12,8 \right )} & D_{\mathrm{s}1}^{\left ( 12,9 \right )} & 0 & D_{\mathrm{s}1}^{\left ( 12,11 \right )} & D_{\mathrm{s}1}^{\left ( 12,12 \right )} \end{array}\displaystyle \!\! \right ]\!, $$
(C.1)

where

$$ D_{\mathrm{s}1}^{\left ( 1,1 \right )} = D_{\mathrm{s}1}^{\left ( 7,7 \right )} = - m_{1}w^{2} + k_{\mathrm{n}2} + k_{\mathrm{s}3} + 2k_{\mathrm{n}1}[1 - \cos (ka)], $$
(C.2)
$$\begin{aligned} D_{\mathrm{s}1}^{\left ( 3,9 \right )} =& D_{\mathrm{s}1}^{\left ( 9,3 \right )} = \frac{a}{2}D_{\mathrm{s}1}^{\left ( 9,7 \right )} = \frac{a}{2}D_{\mathrm{s}1}^{\left ( 7,9 \right )} = \frac{a}{2}D_{\mathrm{s}1}^{\left ( 7,3 \right )} = \frac{a}{2}D_{\mathrm{s}1}^{\left ( 3,7 \right )} = - \frac{a}{2}D_{\mathrm{s}1}^{\left ( 1,3 \right )} = - \frac{a}{2}D_{\mathrm{s}1}^{\left ( 3,1 \right )} \\ =& - \frac{a}{2}D_{\mathrm{s}1}^{\left ( 9,1 \right )} = - \frac{a}{2}D_{\mathrm{s}1}^{\left ( 1,9 \right )} = - \frac{a^{2}}{4}D_{\mathrm{s}1}^{\left ( 7,1 \right )} = - \frac{a^{2}}{4}D_{\mathrm{s}1}^{\left ( 1,7 \right )} = \frac{k_{\mathrm{s}3}a^{2}}{4}, \end{aligned}$$
(C.3)
$$ D_{\mathrm{s}1}^{\left ( 2,2 \right )} = D_{\mathrm{s}1}^{\left ( 8,8 \right )} = - m_{1}w^{2} + k_{\mathrm{s}2} + 2k_{\mathrm{s}1}[1 - \cos (ka)], $$
(C.4)
$$ D_{\mathrm{s}1}^{\left ( 1,4 \right )} = D_{\mathrm{s}1}^{\left ( 4,1 \right )} = D_{\mathrm{s}1}^{\left ( 7,10 \right )} = D_{\mathrm{s}1}^{\left ( 10,7 \right )} = - k_{\mathrm{n}2}, $$
(C.5)
$$\begin{aligned} D_{\mathrm{s}1}^{\left ( 5,6 \right )} =& D_{\mathrm{s}1}^{\left ( 6,5 \right )} = D_{\mathrm{s}1}^{\left ( 12,11 \right )} = D_{\mathrm{s}1}^{\left ( 11,12 \right )} = - D_{\mathrm{s}1}^{\left ( 6,2 \right )} = - D_{\mathrm{s}1}^{\left ( 2,6 \right )} = - D_{\mathrm{s}1}^{\left ( 5,3 \right )} = - D_{\mathrm{s}1}^{\left ( 3,5 \right )} = - D_{\mathrm{s}1}^{\left ( 9,11 \right )} \\ =& - D_{\mathrm{s}1}^{\left ( 11,9 \right )} = - D_{\mathrm{s}1}^{\left ( 12,8 \right )} = - D_{\mathrm{s}1}^{\left ( 8,12 \right )} = - \frac{r}{2}D_{\mathrm{s}1}^{\left ( 5,2 \right )} = - \frac{r}{2}D_{\mathrm{s}1}^{\left ( 2,5 \right )} = - \frac{r}{2}D_{\mathrm{s}1}^{\left ( 8,11 \right )} \\ =& - \frac{r}{2}D_{\mathrm{s}1}^{\left ( 11,8 \right )} = \frac{k_{\mathrm{s}2}r}{2}, \end{aligned}$$
(C.6)
$$ D_{\mathrm{s}1}^{\left ( 3,3 \right )} = D_{\mathrm{s}1}^{\left ( 9,9 \right )} = - I_{1}w^{2} + k_{\mathrm{r}2} + \frac{k_{\mathrm{s}2}r^{2}}{4} + \frac{k_{\mathrm{s}3}a^{2}}{4} + 2k_{\mathrm{r}1}[1 - \cos (ka)] + \frac{k_{\mathrm{s}1}a^{2}}{2}[1 + \cos (ka)], $$
(C.7)
$$ D_{\mathrm{s}1}^{\left ( 6,6 \right )} = D_{\mathrm{s}1}^{\left ( 12,12 \right )} = - I_{2}w^{2} + k_{\mathrm{r}2} + \frac{k_{\mathrm{s}2}r^{2}}{4}, $$
(C.8)
$$ D_{\mathrm{s}1}^{\left ( 2,3 \right )} = D_{\mathrm{s}1}^{\left ( 8,9 \right )} = \frac{k_{\mathrm{s}2}r}{2} - \mathrm{i}a\sin (ka)k_{\mathrm{s}1}, $$
(C.9)
$$ D_{\mathrm{s}1}^{\left ( 3,2 \right )} = D_{\mathrm{s}1}^{\left ( 9,8 \right )} = \frac{k_{\mathrm{s}2}r}{2} + \mathrm{i}a\sin (ka)k_{\mathrm{s}1}, $$
(C.10)
$$ D_{\mathrm{s}1}^{\left ( 3,6 \right )} = D_{\mathrm{s}1}^{\left ( 6,3 \right )} = D_{\mathrm{s}1}^{\left ( 9,12 \right )} = D_{\mathrm{s}1}^{\left ( 12,9 \right )} = - k_{\mathrm{r}2} - \frac{k_{\mathrm{s}2}r^{2}}{4}, $$
(C.11)
$$ D_{\mathrm{s}1}^{\left ( 5,5 \right )} = D_{\mathrm{s}1}^{\left ( 11,11 \right )} = k_{\mathrm{s}2} - m_{2}w^{2}, $$
(C.12)
$$ D_{\mathrm{s}1}^{\left ( 4,4 \right )} = D_{\mathrm{s}1}^{\left ( 10,10 \right )} = k_{\mathrm{n}2} - m_{2}w^{2}. $$
(C.13)

Appendix D

The elements of matrix \(\mathbf{G}_{\mathrm{s}}\) in Eq. (13) are expressed as:

$$ \mathbf{G}_{\mathrm{s}} = \left [ \textstyle\begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c} G_{\mathrm{s}}^{\left ( 1,1 \right )} & 0 & 0 & G_{\mathrm{s}}^{\left ( 1,4 \right )} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & G_{\mathrm{s}}^{\left ( 2,2 \right )} & G_{\mathrm{s}}^{\left ( 2,3 \right )} & 0 & G_{\mathrm{s}}^{\left ( 2,5 \right )} & G_{\mathrm{s}}^{\left ( 2,6 \right )} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & G_{\mathrm{s}}^{\left ( 3,2 \right )} & G_{\mathrm{s}}^{\left ( 3,3 \right )} & 0 & G_{\mathrm{s}}^{\left ( 3,5 \right )} & G_{\mathrm{s}}^{\left ( 3,6 \right )} & 0 & 0 & 0 & 0 & 0 & 0 \\ G_{\mathrm{s}}^{\left ( 4,1 \right )} & 0 & 0 & G_{\mathrm{s}}^{\left ( 4,4 \right )} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & G_{\mathrm{s}}^{\left ( 5,2 \right )} & G_{\mathrm{s}}^{\left ( 5,3 \right )} & 0 & G_{\mathrm{s}}^{\left ( 5,5 \right )} & G_{\mathrm{s}}^{\left ( 5,6 \right )} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & G_{\mathrm{s}}^{\left ( 6,2 \right )} & G_{\mathrm{s}}^{\left ( 6,3 \right )} & 0 & G_{\mathrm{s}}^{\left ( 6,5 \right )} & G_{\mathrm{s}}^{\left ( 6,6 \right )} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & G_{\mathrm{s}}^{\left ( 7,7 \right )} & 0 & 0 & G_{\mathrm{s}}^{\left ( 10,7 \right )} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & G_{\mathrm{s}}^{\left ( 8,8 \right )} & G_{\mathrm{s}}^{\left ( 8,9 \right )} & 0 & G_{\mathrm{s}}^{\left ( 8,11 \right )} & G_{\mathrm{s}}^{\left ( 8,12 \right )} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & G_{\mathrm{s}}^{\left ( 9,8 \right )} & G_{\mathrm{s}}^{\left ( 9,9 \right )} & 0 & G_{\mathrm{s}}^{\left ( 9,11 \right )} & G_{\mathrm{s}}^{\left ( 9,12 \right )} \\ 0 & 0 & 0 & 0 & 0 & 0 & G_{\mathrm{s}}^{\left ( 7,10 \right )} & 0 & 0 & G_{\mathrm{s}}^{\left ( 10,10 \right )} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & G_{\mathrm{s}}^{\left ( 11,8 \right )} & G_{\mathrm{s}}^{\left ( 11,9 \right )} & 0 & G_{\mathrm{s}}^{\left ( 11,11 \right )} & G_{\mathrm{s}}^{\left ( 11,12 \right )} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & G_{\mathrm{s}}^{\left ( 12,8 \right )} & G_{\mathrm{s}}^{\left ( 12,9 \right )} & 0 & G_{\mathrm{s}}^{\left ( 12,11 \right )} & G_{\mathrm{s}}^{\left ( 12,12 \right )} \end{array}\displaystyle \right ]\!, $$
(D.1)

where

$$ G_{\mathrm{s}}^{\left ( 1,1 \right )} = G_{\mathrm{s}}^{\left ( 7,7 \right )} = 2k_{\mathrm{n}1} + k_{\mathrm{n}2}, $$
(D.2)
$$ G_{\mathrm{s}}^{\left ( 4,4 \right )} = G_{\mathrm{s}}^{\left ( 10,10 \right )} = - G_{\mathrm{s}}^{\left ( 1,4 \right )} = - G_{\mathrm{s}}^{\left ( 4,1 \right )} = - G_{\mathrm{s}}^{\left ( 7,10 \right )} = - G_{\mathrm{s}}^{\left ( 10,7 \right )} = k_{\mathrm{n}2}, $$
(D.3)
$$ G_{\mathrm{s}}^{\left ( 2,2 \right )} = G_{\mathrm{s}}^{\left ( 8,8 \right )} = 2k_{\mathrm{s}1} + k_{\mathrm{s}2}, $$
(D.4)
$$ G_{\mathrm{s}}^{\left ( 6,6 \right )} = G_{\mathrm{s}}^{\left ( 12,12 \right )} = - G_{\mathrm{s}}^{\left ( 3,6 \right )} = - G_{\mathrm{s}}^{\left ( 6,3 \right )} = - G_{\mathrm{s}}^{\left ( 12,9 \right )} = - G_{\mathrm{s}}^{\left ( 9,12 \right )} = k_{\mathrm{r}2} + \frac{k_{\mathrm{s}2}r^{2}}{4}, $$
(D.5)
$$\begin{aligned} G_{\mathrm{s}}^{\left ( 2,3 \right )} =& G_{\mathrm{s}}^{\left ( 3,2 \right )} = G_{\mathrm{s}}^{\left ( 5,6 \right )} = G_{\mathrm{s}}^{\left ( 6,5 \right )} = G_{\mathrm{s}}^{\left ( 8,9 \right )} = G_{\mathrm{s}}^{\left ( 9,8 \right )} = G_{\mathrm{s}}^{\left ( 12,11 \right )} = G_{\mathrm{s}}^{\left ( 11,12 \right )} = - G_{\mathrm{s}}^{\left ( 2,6 \right )} \\ =& - G_{\mathrm{s}}^{\left ( 6,2 \right )} = - G_{\mathrm{s}}^{\left ( 3,5 \right )} = - G_{\mathrm{s}}^{\left ( 5,3 \right )} = - G_{\mathrm{s}}^{\left ( 8,12 \right )} = - G_{\mathrm{s}}^{\left ( 12,8 \right )} = - G_{\mathrm{s}}^{\left ( 9,11 \right )} = - G_{\mathrm{s}}^{\left ( 11,9 \right )} \\ =& \frac{r}{2}G_{\mathrm{s}}^{\left ( 5,5 \right )} = \frac{r}{2}G_{\mathrm{s}}^{\left ( 11,11 \right )} = - \frac{r}{2}G_{\mathrm{s}}^{\left ( 2,5 \right )} = - \frac{r}{2}G_{\mathrm{s}}^{\left ( 5,2 \right )} = - \frac{r}{2}G_{\mathrm{s}}^{\left ( 8,11 \right )} = - \frac{r}{2}G_{\mathrm{s}}^{\left ( 11,8 \right )} = \frac{k_{\mathrm{s}2}r}{2}, \end{aligned}$$
(D.6)
$$ G_{\mathrm{s}}^{\left ( 3,3 \right )} = G_{\mathrm{s}}^{\left ( 9,9 \right )} = 2k_{\mathrm{r}1} + k_{\mathrm{r}2} + \frac{k_{\mathrm{s}1}a^{2}}{2} + \frac{k_{\mathrm{s}2}r^{2}}{4}. $$
(D.7)

Appendix E

The elements of matrix \(\mathbf{G}\)s1 in Eq. (13) are expressed as:

$$ \mathbf{G}_{\mathrm{s}1} = \left [ \textstyle\begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c} G_{\mathrm{s}1}^{\left ( 1,1 \right )} & G_{\mathrm{s}1}^{\left ( 1,2 \right )} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & G_{\mathrm{s}1}^{\left ( 2,3 \right )} & G_{\mathrm{s}1}^{\left ( 2,4 \right )} & G_{\mathrm{s}1}^{\left ( 2,5 \right )} & G_{\mathrm{s}1}^{\left ( 2,6 \right )} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & G_{\mathrm{s}1}^{\left ( 3,3 \right )} & G_{\mathrm{s}1}^{\left ( 3,4 \right )} & G_{\mathrm{s}1}^{\left ( 3,5 \right )} & G_{\mathrm{s}1}^{\left ( 3,6 \right )} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & G_{\mathrm{s}1}^{\left ( 7,7 \right )} & G_{\mathrm{s}1}^{\left ( 7,8 \right )} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & G_{\mathrm{s}1}^{\left ( 8,9 \right )} & G_{\mathrm{s}1}^{\left ( 8,10 \right )} & G_{\mathrm{s}1}^{\left ( 8,11 \right )} & G_{\mathrm{s}1}^{\left ( 8,12 \right )} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & G_{\mathrm{s}1}^{\left ( 9,9 \right )} & G_{\mathrm{s}1}^{\left ( 9,10 \right )} & G_{\mathrm{s}1}^{\left ( 9,11 \right )} & G_{\mathrm{s}1}^{\left ( 9,12 \right )} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{array}\displaystyle \right ], $$
(E.1)

where

$$ G_{\mathrm{s}1}^{\left ( 1,1 \right )} = G_{\mathrm{s}1}^{\left ( 1,2 \right )} = G_{\mathrm{s}1}^{\left ( 7,7 \right )} = G_{\mathrm{s}1}^{\left ( 7,8 \right )} = - k_{\mathrm{n}1}, $$
(E.2)
$$\begin{aligned} G_{\mathrm{s}1}^{\left ( 2,6 \right )} =& G_{\mathrm{s}1}^{\left ( 3,3 \right )} = G_{\mathrm{s}1}^{\left ( 8,12 \right )} = G_{\mathrm{s}1}^{\left ( 9,9 \right )} = - G_{\mathrm{s}1}^{\left ( 8,11 \right )} = - G_{\mathrm{s}1}^{\left ( 3,4 \right )} = - G_{\mathrm{s}1}^{\left ( 2,5 \right )} = - G_{\mathrm{s}1}^{\left ( 9,10 \right )} = - \frac{a}{2}G_{\mathrm{s}1}^{\left ( 2,3 \right )} \\ =& - \frac{a}{2}G_{\mathrm{s}1}^{\left ( 2,4 \right )} = - \frac{a}{2}G_{\mathrm{s}1}^{\left ( 8,9 \right )} = - \frac{a}{2}G_{\mathrm{s}1}^{\left ( 8,10 \right )} = \frac{k_{\mathrm{s}1}a}{2}, \end{aligned}$$
(E.3)
$$ G_{\mathrm{s}1}^{\left ( 3,5 \right )} = G_{\mathrm{s}1}^{\left ( 3,6 \right )} = G_{\mathrm{s}1}^{\left ( 9,11 \right )} = G_{\mathrm{s}1}^{\left ( 9,12 \right )} = - k_{\mathrm{r}1} + \frac{k_{\mathrm{s}1}a^{2}}{4}. $$
(E.4)

Appendix F

The elements of matrix \(\mathbf{G}\)s3 in Eq. (19) are expressed as:

$$ \mathbf{G}_{\mathrm{s}3}\! = \!\left [\!\! \textstyle\begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c} G_{\mathrm{s}3}^{\left ( 1,1 \right )} & 0 & 0 & G_{\mathrm{s}3}^{\left ( 1,4 \right )} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & G_{\mathrm{s}3}^{\left ( 2,2 \right )} & G_{\mathrm{s}3}^{\left ( 2,3 \right )} & 0 & G_{\mathrm{s}3}^{\left ( 2,5 \right )} & G_{\mathrm{s}3}^{\left ( 2,6 \right )} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & G_{\mathrm{s}3}^{\left ( 3,2 \right )} & G_{\mathrm{s}3}^{\left ( 3,3 \right )} & 0 & G_{\mathrm{s}3}^{\left ( 3,5 \right )} & G_{\mathrm{s}3}^{\left ( 3,6 \right )} & 0 & 0 & 0 & 0 & 0 & 0 \\ G_{\mathrm{s}3}^{\left ( 4,1 \right )} & 0 & 0 & G_{\mathrm{s}3}^{\left ( 4,4 \right )} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & G_{\mathrm{s}3}^{\left ( 5,2 \right )} & G_{\mathrm{s}3}^{\left ( 5,3 \right )} & 0 & G_{\mathrm{s}3}^{\left ( 5,5 \right )} & G_{\mathrm{s}3}^{\left ( 5,6 \right )} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & G_{\mathrm{s}3}^{\left ( 6,2 \right )} & G_{\mathrm{s}3}^{\left ( 6,3 \right )} & 0 & G_{\mathrm{s}3}^{\left ( 6,5 \right )} & G_{\mathrm{s}3}^{\left ( 6,6 \right )} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & G_{\mathrm{s}3}^{\left ( 7,7 \right )} & 0 & 0 & G_{\mathrm{s}3}^{\left ( 7,10 \right )} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & G_{\mathrm{s}3}^{\left ( 8,8 \right )} & G_{\mathrm{s}3}^{\left ( 8,9 \right )} & 0 & G_{\mathrm{s}3}^{\left ( 8,11 \right )} & G_{\mathrm{s}3}^{\left ( 8,12 \right )} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & G_{\mathrm{s}3}^{\left ( 9,8 \right )} & G_{\mathrm{s}3}^{\left ( 9,9 \right )} & 0 & G_{\mathrm{s}3}^{\left ( 9,11 \right )} & G_{\mathrm{s}3}^{\left ( 9,12 \right )} \\ 0 & 0 & 0 & 0 & 0 & 0 & G_{\mathrm{s}3}^{\left ( 7,10 \right )} & 0 & 0 & G_{\mathrm{s}3}^{\left ( 10,10 \right )} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & G_{\mathrm{s}3}^{\left ( 11,8 \right )} & G_{\mathrm{s}3}^{\left ( 11,9 \right )} & 0 & G_{\mathrm{s}3}^{\left ( 11,11 \right )} & G_{\mathrm{s}3}^{\left ( 11,12 \right )} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & G_{\mathrm{s}3}^{\left ( 12,8 \right )} & G_{\mathrm{s}3}^{\left ( 12,9 \right )} & 0 & G_{\mathrm{s}3}^{\left ( 12,11 \right )} & G_{\mathrm{s}3}^{\left ( 12,12 \right )} \end{array}\displaystyle \!\! \right ]\!, $$
(F.1)

where

$$ G_{\mathrm{s}3}^{\left ( 1,1 \right )} = G_{\mathrm{s}3}^{\left ( 7,7 \right )} = m_{1}(0 + \mathrm{i}k v)^{2} + 2k_{\mathrm{n}1}[1 - \cos (ka)] + k_{\mathrm{n}2}, $$
(F.2)
$$ G_{\mathrm{s}3}^{\left ( 4,4 \right )} = G_{\mathrm{s}3}^{\left ( 10,10 \right )} = m_{2}(0 + \mathrm{i}k v)^{2} + k_{\mathrm{n}2}, $$
(F.3)
$$ G_{\mathrm{s}3}^{\left ( 2,2 \right )} = G_{\mathrm{s}3}^{\left ( 8,8 \right )} = m_{1}(0 + \mathrm{i}k v)^{2} + 2k_{\mathrm{s}1}[1 - \cos (ka)] + k_{\mathrm{s}2}, $$
(F.4)
$$ G_{\mathrm{s}3}^{\left ( 6,6 \right )} = G_{\mathrm{s}3}^{\left ( 12,12 \right )} = I_{2}(0 + \mathrm{i}k v)^{2} + k_{\mathrm{r}2} + \frac{k_{\mathrm{s}2}r^{2}}{4}, $$
(F.5)
$$ G_{\mathrm{s}3}^{\left ( 5,5 \right )} = G_{\mathrm{s}3}^{\left ( 11,11 \right )} = m_{2}(0 + \mathrm{i}k v)^{2} + k_{\mathrm{s}2}, $$
(F.6)
$$ G_{\mathrm{s}3}^{\left ( 3,3 \right )} = G_{\mathrm{s}3}^{\left ( 9,9 \right )} = I_{1}(0 + \mathrm{i}k v)^{2} + 2k_{\mathrm{r}1}[1 - \cos (ka)] + \frac{k_{\mathrm{s}1}a^{2}}{2}[1 + \cos (ka)] + \frac{k_{\mathrm{s}2}r^{2}}{4} + k_{\mathrm{r}2}, $$
(F.7)
$$ G_{\mathrm{s}3}^{\left ( 1,4 \right )} = G_{\mathrm{s}3}^{\left ( 4,1 \right )} = G_{\mathrm{s}3}^{\left ( 7,10 \right )} = G_{\mathrm{s}3}^{\left ( 10,7 \right )} = - k_{\mathrm{n} 2}, $$
(F.8)
$$ G_{\mathrm{s}3}^{\left ( 2,3 \right )} = G_{\mathrm{s}3}^{\left ( 8,9 \right )} = \frac{k_{\mathrm{s}2}r}{2} - \mathrm{i}a\sin (ka)k_{\mathrm{s}1}, $$
(F.9)
$$ G_{\mathrm{s}3}^{\left ( 3,2 \right )} = G_{\mathrm{s}3}^{\left ( 9,8 \right )} = \frac{k_{\mathrm{s}2}r}{2} + \mathrm{i}a\sin (ka)k_{\mathrm{s}1}, $$
(F.10)
$$ G_{\mathrm{s}3}^{\left ( 3,6 \right )} = G_{\mathrm{s}3}^{\left ( 6,3 \right )} = G_{\mathrm{s}3}^{\left ( 9,12 \right )} = G_{\mathrm{s}3}^{\left ( 12,9 \right )} = - k_{\mathrm{r}2} - \frac{k_{\mathrm{s}2}r^{2}}{4}, $$
(F.11)
$$\begin{aligned} G_{\mathrm{s}3}^{\left ( 5,6 \right )} =& G_{\mathrm{s}3}^{\left ( 6,5 \right )} = G_{\mathrm{s}3}^{\left ( 12,11 \right )} = G_{\mathrm{s}3}^{\left ( 11,12 \right )} = - G_{\mathrm{s}3}^{\left ( 6,2 \right )} = - G_{\mathrm{s}3}^{\left ( 2,6 \right )} = - G_{\mathrm{s}3}^{\left ( 5,3 \right )} = - G_{\mathrm{s}3}^{\left ( 3,5 \right )} = - G_{\mathrm{s}3}^{\left ( 9,11 \right )} \\ =& - G_{\mathrm{s}3}^{\left ( 11,9 \right )} = - G_{\mathrm{s}3}^{\left ( 12,8 \right )} = - G_{\mathrm{s}3}^{\left ( 8,12 \right )} = - \frac{r}{2}G_{\mathrm{s}3}^{\left ( 5,2 \right )} = - \frac{r}{2}G_{\mathrm{s}3}^{\left ( 2,5 \right )} = - \frac{r}{2}G_{\mathrm{s}3}^{\left ( 8,11 \right )} \\ =& - \frac{r}{2}G_{\mathrm{s}3}^{\left ( 11,8 \right )} = \frac{k_{\mathrm{s}2}r}{2}. \end{aligned}$$
(F.12)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, KX., Shui, GS., Wang, YZ. et al. Enhanced Fracture Resistance Induced by Coupling Multiple Degrees of Freedom in Elastic Wave Metamaterials with Local Resonators. J Elast 144, 33–53 (2021). https://doi.org/10.1007/s10659-021-09825-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-021-09825-9

Keywords

Mathematics Subject Classification

Navigation