Skip to main content
Log in

Simulation study of an optimized current matching for In0.39Ga0.61N/In0.57Ga0.43N/In0.74Ga0.26N triple-junction solar cells

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

This paper deals with the design and optimization of a triple-junction (TJ) solar cell using indium gallium nitride (InGaN) material. Two tunnel diodes are used to ensure connection between the different subcells. A comprehensive study is performed by means of 2D numerical simulations to locate the best bandgap combination that leads to an optimized current matching. During the simulations, the doping concentration and the base thickness are considered as fitting parameters for the top and the middle subcells. The In0.39Ga0.61N/In0.57Ga0.43N/In0.74Ga0.26N bandgap combination is supposed to be 2.02 eV/1.52 eV/1.13 eV. A high short-circuit current density (13.313 mA/cm2) is achieved by assuming a base thickness of 1 µm for each subcell and a p/n doping ratio of 5 × 1018 cm−3/5 × 1015 cm−3 in the top cell, 1.5 × 1019 cm−3/1.5 × 1016 cm−3 in the middle cell, and 7.5 × 1018 cm−3/7.5 × 1015 cm−3 in the bottom cell. The optimized structure has an improved open-circuit voltage (2.877 V), fill factor (83%), and conversion efficiency (33.11%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Green, M.A., Dunlop, E.D., Levi, D.H., Hohl-Ebinger, J., Yoshita, M., Ho-Baillie, A.W.: Solar cell efficiency tables (version 54). Prog. Photovolt. Res. Appl. 27, 565–575 (2019)

    Google Scholar 

  2. Kudryashov, D.A., Gudovskikh, A.S., Nikitina, E.V., Egorov, A.Y.: Design of multijunctionGaPNAs/Si heterostructure solar cells by computer simulation. Phys. Semicond. Dev. 48, 381–386 (2014). https://doi.org/10.1134/S1063782614030154

    Article  Google Scholar 

  3. Henry, C.H.: Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells. J. Appl. Phys. 51, 4494–4500 (1980). https://doi.org/10.1063/1.328272

    Article  Google Scholar 

  4. Mesrane, A., Mahrane, A., Rahmoune, F., Oulebsir, A.: Theoretical study and simulations of an InGaN dual-junction solar cell. J. Electron. Mater. 46, 1458–1465 (2017). https://doi.org/10.1007/s11664-016-5176-z

    Article  Google Scholar 

  5. Akter, N.: Design and simulation of Indium Gallium nitride multijunction tandem solar cells. Int. J. Res. Eng. Tech. 3, 315–321 (2014). https://doi.org/10.15623/ijret.2014.0301056

    Article  Google Scholar 

  6. Luque, A., Hegedus, S.: Chapter 8 in Handbook of Photovoltaic Science and Engineering. Wiley (2011)

    Google Scholar 

  7. Keppner, H., Meier, J., Torres, P., Fischer, D., Shah, A.: Microcrystalline silicon and micromorph tandem solar cells. Appl. Phys A 69, 169 (1999). https://doi.org/10.1007/s003390050987

    Article  Google Scholar 

  8. Leem, J.W., Lee, Y.T., Yu, J.S.: Optimum design of InGaP/GaAs dual-junction solar cells with different tunnel diodes. Opt. Quant. Electron. 41, 605 (2009). https://doi.org/10.1007/s11082-010-9367-1

    Article  Google Scholar 

  9. Singh, K.J., Sarkar, S.K.: Highly efficient ARC less InGaP/GaAs DJ solar cell numerical modeling using optimized InAlGaP BSF layers”. Opt. Quant. Electron. 43, 1–21 (2012). https://doi.org/10.1007/s11082-011-9499-y

    Article  Google Scholar 

  10. Chang, S.T., Tang, M., He, R.Y., Wang, W.C., Pei, Z., Kung, C.Y.: TCAD simulation of hydrogenated amorphous silicon-carbon/microcrystalline-silicon/hydrogenated amorphous silicon-germanium PIN solar cells. Thin Solid Films 518, 250–252 (2010). https://doi.org/10.1016/j.tsf.2009.10.100

    Article  Google Scholar 

  11. Marouf, Y., Dehimi, L., Pezzimenti, F.: Simulation study for the current matching optimization in In0.48Ga0.52N/In0.74Ga0.26N dual junction solar cells. Superlattice. Microst. 130, 377–389 (2019). https://doi.org/10.1016/j.spmi.2019.05.004

    Article  Google Scholar 

  12. Marouf, Y., Dehimi, L., Bouzid, F., Pezzimenti, F.: Theoretical design and performance of InxGa1-xN single junction solar cell. Optik 163, 22–32 (2018). https://doi.org/10.1016/j.ijleo.2018.02.106

    Article  Google Scholar 

  13. Bouzid, F., Dehimi, L., Pezzimenti, F., Hadjab, M., Larbi, A.H.: Numerical simulation study of a high efficient AlGaN-based ultraviolet photodetector. Superlattice. Microst. 122, 57–73 (2018). https://doi.org/10.1016/j.spmi.2018.08.022

    Article  Google Scholar 

  14. Silvaco Int., Atlas User’s Manual, Device Simulator Software (2016).

  15. Schwierz, F.: An electron mobility model for wurtziteGaN. Solid State Electron. 49, 889 (2005). https://doi.org/10.1016/j.sse.2005.03.006

    Article  Google Scholar 

  16. Megherbi, M.L., Pezzimenti, F., Dehimi, L., Saadoune, A., Della Corte, F.G.: Analysis of the forward I-V characteristics of Al-implanted 4H-SiC p-i-n diodes with modeling of recombination and trapping effects due to intrinsic and doping-induced defect states. J. Electron. Mater. 47, 1414 (2018). https://doi.org/10.1007/s11664-017-5916-8

    Article  Google Scholar 

  17. Megherbi, M.L., Pezzimenti, F., Dehimi, L., Saadoune, M.A., Della Corte, F.G.: Analysis of trapping effects on the forward current-voltage characteristics of Al-implanted 4H-SiC pin diodes. IEEE Trans. Electron Devices 65, 3371 (2018). https://doi.org/10.1109/TED.2018.2849693

    Article  Google Scholar 

  18. Bencherif, H., Dehimi, L., Pezzimenti, F., de Martino, G., Della Corte, F.G.: Multiobjective optimization of design of 4H-sic power mosfets for specific applications. J. Electron. Mater. 48, 3871–3880 (2019). https://doi.org/10.1007/s11664-019-07142-5

    Article  Google Scholar 

  19. Dziewior, J., Schmid, W.: Auger coefficients for highly doped and highly excited silicon. Appl. Phys. Lett. 31, 346 (1977). https://doi.org/10.1063/1.89694

    Article  Google Scholar 

  20. Zeghdar, K., Dehimi, L., Pezzimenti, F., Rao, S., Della Corte, F.G.: Simulation and analysis of the current–voltage–temperature characteristics of Al/Ti/4H-SiC Schottky barrier diodes. Jpn. J. Appl. Phys. 58, 014002 (2019). https://doi.org/10.7567/1347-4065/aaf3ab/meta

    Article  Google Scholar 

  21. Brown, G.F., Ager, J.W., III., Walukiewicz, W., Wu, J.: Finite element simulations of compositionally graded InGaN solar cells. Sol. Energy Mater. Sol. Cell. 94, 478 (2010). https://doi.org/10.1016/j.solmat.2009.11.010

    Article  Google Scholar 

  22. Adachi, S.: Refractive indices of III–V compounds: Key properties of InGaAsP relevant to device design. J. Appl. Phys. 53(8), 5863–5869 (1982). https://doi.org/10.1063/1.331425

    Article  Google Scholar 

  23. Bencherif, H., Dehimi, L., Pezzimenti, F., Della Corte, F.G.: Temperature and SiO2/4H-SiC interface trap effects on the electrical characteristics of low breakdown voltage MOSFETs. Appl. Phys. A-Mater. 125, 294 (2019). https://doi.org/10.1007/s00339-019-2606-9

    Article  Google Scholar 

  24. Shen, Y.C., Mueller, G.O., Watanabe, S., Gardner, N.F., Munkholm, A., Krames, M.R.: Auger recombination in InGaN measured by photoluminescence. Appl. Phys. Lett. 9, 141101 (2008). https://doi.org/10.1063/1.2785135

    Article  Google Scholar 

  25. Zhang, X., Wang, X.L., Xiao, H.L., Yang, C.B., Ran, J.X., Wang, C.M., Hou, Q.F., Li, J.: Simulation of In0.65Ga0.35N single-junction solar cell. J. Phys. D. Appl. Phys. 40, 7335–7338 (2007). https://doi.org/10.1088/0022-3727/40/23/013

    Article  Google Scholar 

  26. Pezzimenti, F., Della Corte, F.: Design and modeling of a novel 4H-SiC normally-off BMFET transistor for power applications. Proc IEEE Mediterranean ElectrotechnicalConfMelecon (2010). https://doi.org/10.1109/MELCON.2010.5476362

    Article  Google Scholar 

  27. De Martino, G., Pezzimenti, F., Della Corte, F.G.: Interface trap effects in the design of a 4H-SiC MOSFET for low voltage applications. Proc. Int. Semicond. Conf. CAS (2018). https://doi.org/10.1109/SMICND.2018.8539744

    Article  Google Scholar 

  28. Kurtz, S.R., Faine, P., Olson, J.M.: Modeling of two-junction, series-connected tandem solar cells using top-cell thickness as an adjustable parameter. J. Appl. Phys. 68, 1890 (1990). https://doi.org/10.1063/1.347177

    Article  Google Scholar 

  29. MoslehiMilani, N., Asgari, A.: The effects of carrier transport phenomena on the spectral and powercharacteristics of blue superluminescent light emitting diodes. Phys. E. 69, 165–170 (2015). https://doi.org/10.1016/j.physe.2015.01.035

    Article  Google Scholar 

  30. Nawaz, M., Ahmad, A.: A TCAD-based modeling of GaN/InGaN/Si solar cells. Semicond. Sci. Technol. 27, 035019 (2012). https://doi.org/10.1088/0268-1242/27/3/035019

    Article  Google Scholar 

  31. Muth, J.F., Lee, J.H., Shmagin, I.K., Kolbas, R.M., Casey, H.C., Keller, B.P., Mishra, U.K., DenBaars, S.P.: Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements. Appl. Phys. 71, 2572–2574 (1997). https://doi.org/10.1063/1.120191

    Article  Google Scholar 

  32. Wu, J., Walukiewicz, W., Yu, K., Ager, J.W., III., Haller, E.E., Lu, H., Schaff, W.J.: Small band gap bowing in In1−xGaxN alloys. Appl. Phys. Lett. 80, 4741 (2002). https://doi.org/10.1063/1.1489481

    Article  Google Scholar 

  33. Pezzimenti, F., Albanese, L.F., Bellone, S., Della Corte, F.G.: Analytical model for the forward current of Al implanted 4H-SiC p-i-n diodes in a wide range of temperatures. Proc. IEEE Bipolar/BiCMOS Circuits and Technology Meeting (2009). https://doi.org/10.1109/BIPOL.2009.5314147

    Article  Google Scholar 

  34. Torvik, J.T.: III-Nitride Semiconductors: Electrical, Structural and Defects Properties, Dopants in GaN, pp. 17–49. Elsevier (2000)

    Book  Google Scholar 

  35. Levinshtein, M.E., Rumyantsev, S.L., Shur, M.S.: Properties of Advanced Semiconductor Materials. Wiley, Chichester (2001)

    Google Scholar 

  36. Rabady, R.I., Manasreh, H.: Thicknesses optimization of two-and three-junction photovoltaic cells with matched currents and matched lattice constants. Sol. Energy 158, 20–27 (2017). https://doi.org/10.1016/j.solener.2017.09.016

    Article  Google Scholar 

  37. Bencherif, H., Dehimi, L., Pezzimenti, F., Della Corte, F.G.: Improving the efficiency of a-Si:H/c-Si thin heterojunction solar cells by using both antireflection coating engineering and diffraction grating. Optik 182, 682–693 (2019). https://doi.org/10.1016/j.ijleo.2019.01.032

    Article  Google Scholar 

  38. Bencherif, H., Dehimi, L., Pezzimenti, F., Yousfi, A., Abdi, M.A., Saidi, L., Della Corte, F.G.: Improved InxGa1_xP/GaAs /Ge tandem solar cell using light trapping engineering and multi-objective optimization approach. Optik 223, 165346 (2020). https://doi.org/10.1016/j.ijleo.2020.165346

    Article  Google Scholar 

  39. Bencherif, H., Dehimi, L., Pezzimenti, F., Yousfi, A.: Analytical model for the light trapping effect on ZnO:Al/c-Si/SiGe/c-Si solar cells with an optimized design. Int. Conf. Appl. Smart Syst. ICASS Proc. (2018). https://doi.org/10.1109/ICASS.2018.8651990

    Article  Google Scholar 

  40. Bouzid, F., Pezzimenti, F., Dehimi, L., Della Corte, F.G., Hadjab, M., HadjLarbi, A.: Analytical modeling of dual-junction tandem solar cells based on an InGaP/GaAsheterojunction stacked on a Ge substrate. J. Electron. Mater. 48, 4107–4116 (2019). https://doi.org/10.1007/s11664-019-07180-z

    Article  Google Scholar 

  41. Mesrane, A., Rahmoune, F., Mahrane, A., Oulebsir, A.: Design and simulation of InGaN p-n junction solar cell. Int. J. Photoenergy 5, 1–9 (2015). https://doi.org/10.1155/2015/594858

    Article  Google Scholar 

  42. Hamzaoui, H., Bouazi, A.S., Rezg, B.: Theoretical possibilities of InxGa1-xN tandem PV structures. Sol. Energ. Mat. Sol. C 87, 595–603 (2005). https://doi.org/10.1016/j.solmat.2004.08.020

    Article  Google Scholar 

  43. Shen, X., Lin, S., Li, F., Wei, Y., Zhong, S., Wan, H., Li, J.: Simulation of the InGaN-based tandem solar cells. Proc. SPIE. (2008). https://doi.org/10.1117/12.793997

    Article  Google Scholar 

  44. Williams, J.J., McFavilen, H., Fischer, A.M., Ding, D., Young, S., Vadiee, E., Ponce, F.A., Arena, C., Honsberg, C.B., Goodnick, S.M.: Refractory InxGa1-x N solar cells for high-temperature applications. IEEE J. Photovolt. 7, 1646–1652 (2017). https://doi.org/10.1109/JPHOTOV.2017.2756057

    Article  Google Scholar 

  45. Horng, R.-H., Chu, M.-T., Chen, H.-R., Liao, W.-Y., Wu, M.-H., Chen, K.-F., Wuu, D.-S.: Improved conversion efficiency of textured InGaN solar cells with interdigitated imbedded electrodes. IEEE Elec. Dev. Lett. 31, 585–587 (2010). https://doi.org/10.1109/LED.2010.2046615

    Article  Google Scholar 

  46. Bi, Z., Zhang, J., Zheng, Q., Lv, L., Lin, Z., Shan, H., Li, P., Ma, X., Han, Y., Hao, Y.: An InGaN-Based solar cell including dual InGaN/GaN multiple quantum wells. IEEE Photonic. Tech. L. 28, 2117–2120 (2016). https://doi.org/10.1109/LPT.2016.2575058

    Article  Google Scholar 

  47. Huang, X., Fu, H., Chen, H., Lu, Z., Baranowski, I., Montes, J., Yang, T.-H., Gunning, B.P., Koleske, D., Zhao, Y.: Reliability analysis of InGaN/GaN multi-quantum-well solar cells under thermal stress. Appl. Phys. Lett. 111, 233511 (2017). https://doi.org/10.1063/1.5006650

    Article  Google Scholar 

  48. Sheu, J.K., Yang, C.C., Tu, S.J., Chang, K.H., Lee, M.L., Lai, W.C., Peng, L.C.: Demonstration of GaN-based solar cells with GaN/InGaNsuperlattice absorption layers. IEEE Elec. Dev. Lett. 30, 225–227 (2009). https://doi.org/10.1109/LED.2008.2012275

    Article  Google Scholar 

  49. Shim, J.P., Jeon, S.R., Jeong, Y.K., Lee, D.S.: Improved efficiency by using transparent contact layers in InGaN-based pin solar cells. IEEE Elec. Dev. Lett. 31, 1140–1142 (2010). https://doi.org/10.1109/LED.2010.2058087

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the DGRSDT of the Ministry of Higher education of Algeria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Dehimi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. List of symbols

Appendix A. List of symbols

Symbol

Notation

\({Aug}_{n,p}\)

Auger coefficients

\({C}_{\rm opt}\)

Radiative coefficient

\({D}_{n}, {D}_{p}\)

Diffusion coefficient

\({d}_{\rm Top,Mid,Bot}\)

Thickness of the top, middle, and bottom subcells

\({E}_{d, a}\)

Energy level for donors and acceptors

\({E}_{g}\)

Material bandgap

\({E}_{ph}\)

Incoming photon energy

\(E{\rm trap}\)

Energy value between the trap energy level and the intrinsic Fermi level

\({E}_{fl}^{e,h}, {E}_{fr}^{e,h}\)

Quasi-Fermi levels for electrons and holes

\({g}_{d, a}\)

Degeneracy factors

\(I\left(\lambda \right)\)

Wavelength dependent photons flux density

\({I}_{0}\)

Reverse saturation current density

\({I}_{\rm src}\)

Source photocurrent

\({J}_{\rm sc}^{\rm Top, Mid, Bot}\)

Short circuit current density for the top, middle, and bottom subcells

\({k}_{\rm B}\)

Boltzmann constant

\({L}_{n}, {L}_{p}\)

Diffusion length

\({m}_{0}\)

Carrier rest mass

\({m}_{e}{, m}_{h}\)

Electron and hole effective masses

\(N\)

Total doping concentration

\({N}_{\rm c}, {N}_{v}\)

Electron and hole density of states in the conduction and the valence bands

\({N}_{d,a}\)

Doping densities

\({N}_{n,p}^{\rm crit}\)

Mean mobility value between the minimum and the maximum

\({P}_{\rm B}\)

Incident beam power density

\(q\)

Electron charge

\({S}_{n}, {S}_{p}\)

Surface recombination velocity in n- and p-type regions

\(T\)

Temperature

\(T\left(E\right)\)

Probability of tunneling phenomena

\({V}_{\rm oc}^{\rm Top, Mid, Bot}\)

Open-circuit voltage for the top, middle, and bottom subcells

\({W}_{\rm B}\)

Beam width clipped to the device

\({x}_{beg}, {x}_{\rm end}\)

Beginning and ending of the tunneling path calculated for each value of E

\({x}_{n}, {x}_{p}\)

Layer thickness

\(\alpha , \beta , \gamma\)

Fitting coefficients

\({\alpha }_{\rm Top,Mid,Bot}\)

Absorption coefficient for the top, middle, and bottom subcells

\(\lambda\)

Wavelength

\({\lambda }_{\rm Beg}\)

Solar spectrum beginning wavelength

\({\lambda }_{\rm Top,Mid,Bot}\)

Cutoff wavelength for the top, middle, and bottom subcells

\({\tau }_{n}, {\tau }_{p}\)

Minority carrier lifetimes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marouf, Y., Dehimi, L., Pezzimenti, F. et al. Simulation study of an optimized current matching for In0.39Ga0.61N/In0.57Ga0.43N/In0.74Ga0.26N triple-junction solar cells. J Comput Electron 20, 1296–1309 (2021). https://doi.org/10.1007/s10825-021-01695-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-021-01695-7

Keywords

Navigation