Skip to main content
Log in

Neoarchaean Felsic Volcanic Rocks in Tracing Evolution of Arcs: An Insight from Geochemical Data of the Gadag Schist Belt, Western Dharwar Craton

  • Research Articles
  • Published:
Journal of the Geological Society of India

Abstract

Quartz porphyry of rhyolitic composition though a volumetrically minor is an important component of metavolcanic successions in the Gadag schist belt in the western Dharwar craton. The quartz porphyries are calc-alkaline, enriched in light rare earth elements (Lan/Ybn ~ 10–20) and with a strong negative Eu anomaly (Eu/Eu*N=0.45–0.58). These features, coupled with high K2O/Na2O (0.8 to 1.46), low Nb/Th (<1), and Lan/Smn ratios of 4.2 to 6.0, suggest that rhyolitic magma formed from melt generated by partial melting of basaltic crust, subsequently modified by crustal assimilation and crystal fractionation. The geological setting of the quartz porphyries and the geochemical relationships suggest magmatism at a convergent plate tectonic setting. The zircon U-Pb age of 2588.0 ± 2.4 Ma for the quartz porphyry, together with an age of 2732 Ma for similar volcanic rocks in the Chitradurga schist belt further south, and 2614 Ma for felsic volcanics from the Shimoga schist belt, point to an extended period with episodic arc magmatism in the western Dharwar craton of at least ~144myr.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ananta Iyer, G. V., Vasudev, V. N. and Jayaram, S. (1980) Rare earth element geochemistry of metabasalts from Kolar and Hutti gold-bearing volcanic belts, Karnataka craton, India. Jour. Geol. Soc. India, v.21, pp.603–608.

    Google Scholar 

  • Anil Kumar, B., Rao, Y. J., Sivaram, T.V. and Gopalan, K. (1996) Sm-Nd ages of Archean metavolcanics of the Dharwar craton, South India. Precambrian Res., v.80, pp.205–216.

    Article  Google Scholar 

  • Balakrishnan, S., Hanson, G. N. and Rajamani, V. (1990) Pb and Nd isotope constraints on the origin of high Mg and tholeiitic amphibolites, Kolar schist belt, South India. Contrib. Mineral. Petrol., v.107, pp.279–292.

    Article  Google Scholar 

  • Balakrishnan, S., Rajamani, V. and Hanson, G. N. (1999) U-Pb ages for zircon and titanite from the Ramagiri area, southern India: Evidence for the accretionary origin of the Eastern Dharwar craton during the late Archean. Jour. Geol., v.107, pp.69–86.

    Article  Google Scholar 

  • Beeraiah, M. B., Senguptha, S. and Venkataswamy Ramachandran, T.V. (2001) Exploration for gold in sulfidic banded magnetite chert of Nagavi-Mallsamudra area, Gadag schist belt. Geol.l Surv. India Spec. Publ., v.58, pp.339–343.

    Google Scholar 

  • Bhaskar Rao, Y.J., Sivaram, T.V., Pantulu, G.V.C., Gopalan, K. and Naqvi, S. M. (1992) Rb-Sr ages of Late Archaean metavolcanics and granites, Dharwar craton, south India, and evidence for Early Proterozoic thermotectonic event(s). Precambrian Res., v.59, pp.145–170.

    Article  Google Scholar 

  • Campbell, L. H., Lesher, C. M., Coad, P., Franklin, J. M., Gorton, M. P. and Thurston, P. C. (1984) Rare earth mobility in alteration pipes below massive Cu-Zn-sulphide deposits. Chemical Geol., v.45, pp.181–202.

    Article  Google Scholar 

  • Castillo, P.R. (2006) An overview of adakite petrogenesis. Chinese Sci. Bull., v.51, pp.257–268.

    Article  Google Scholar 

  • Chadwick, B., Ramakrishnan, M. and Viswanatha, M. N. (1981) The stratigraphy and structure of the Chitradurga region, an illustration of cover-basement interaction in the late Archean evolution of the Dharwar craton. Precambrian Res., v.16, pp.31–54.

    Article  Google Scholar 

  • Chadwick, B., Vasudev, V. N. and Hegde, G.V. (2000) The Dharwar craton, southern India interpreted as a result of Late Archean oblique convergence. Precambrian Res., v.99, pp.91–111.

    Article  Google Scholar 

  • Chadwick, B., Vasudev, V. N. and Hegde, G.V. (2003) The Chitradurga schist belt and its adjacent plutonic rocks, NW of Tungabhadra, Karnataka: a duplex in the Late Archaean convergent setting of the Dharwar Craton. Jour. Geol. Soc. India, v.61, pp.645–663.

    Google Scholar 

  • Chadwick, B., Vasudev, V.N., Hegde, G.V. and Nutman, A.P. (2007) Structure and SHRIMP U/Pb zircon ages of granites adjacent to the Chitradurga Schist Belt: implications for Neoarchean convergence in the Dharwar craton, southern India. Jour. Geol. Soc. India, v.69, pp.5–24.

    Google Scholar 

  • Chakrabarthi, C., Reddy, U.S. and Natarajan, W.K. (1993) Sedimentary structures in the Archaean sediments of the Gadag schist belt, Karnataka. Jour. Geol. Soc. India, v.41, pp.523–528.

    Google Scholar 

  • Champion, D. C. and Smithies, H. R. (2007) Geochemistry of Paleoarchean granites of the East Pilbara Terrane, Pilbara craton, Western Australia: implications for early Archean crustal growth. In: Kranendonk, M.J.V., Smithies, R.H., Bennet, V.C. (Eds.), Earth’s Oldest Rock. Developments in Precambrian Geology,15. Elsevier, pp.369-409.

  • Chappell, B. W., Bryant, C. J., Wyborn, D., White, A. J. R. and Williams, I. S. (1998) High- and low-temperature I-type granites. Resource Geol., v.48, pp.225–35.

    Article  Google Scholar 

  • Chardon, D., Peucat, J.J., Jayananda, M., Choukroune, P. and Fanning, C.M. (2002) Archean granite-greenstone tectonics at Kolar (South India): interplay of diapirism and bulk inhomogeneous contraction during juvenile magmatic accretion. Tectonics, v. 21, doi:https://doi.org/10.1029/2001TC901032.

  • Chardon, D. and Jayananda, M. (2008) Three-dimensional field perspective on deformation, flow, and growth of the lower continental crust (Dharwar craton, India). Tectonics, v.27, doi:https://doi.org/10.1029/2007TC002120

  • Chardon, D., Jayananda, M. and Peucat, J. J. (2011) Lateral constructional flow of hot orogenic crust: Insights from the Neoarchean of south India, geological and geophysical implications for orogenic plateaux. Geochemistry Geophysics Geosystems, v.12, doi: https://doi.org/10.1029/2010GC003398

  • Cleverly, R. W., Betton, P. J. and Bristow, J.W. (1984) Geochemistry and petrogenesis of the Lebombo rhyolites. Geol. Soc. South Africa, v.13, pp.171–194 (Special Publication).

    Google Scholar 

  • Cole, J. W. (1981) Genesis of lavas of the Taupo Volcanic Zone, North Island, New Zealand. Jour. Volcanol. Geotherm. Res., v.10, pp.317–337.

    Article  Google Scholar 

  • Corfu, F. and Hegde, V. S. (2020) U-Pb systematics of the western Dharwar Craton — glimpses of a billion year history of crustal evolution and relations to ancient supercratons. Jour. South Amer. Earth Sci., v.102, doi:https://doi.org/10.1016/j.jsames.2020.102659

  • Curtis, L.C. and Radhakrishna, B.O. (1993) Gadag Gold -A challenging prospect. Geological Society of India, Bangalore, 195p.

    Google Scholar 

  • Dey, S., Pandey, U.K., Rai, A.K. and Chaki, A. (2012) Geochemical and Nd isotope constraints on petrogenesis of granitoids from NW part of the Eastern Dharwar Craton: possible implications for late Archaean crustal accretion. Jour. Asian Earth Sci., v.45, pp.40–56.

    Article  Google Scholar 

  • Dey, S., Nandy, J., Choudhary, A.K., Liu, Y. and Zong, K. (2013) Neoarchaean crustal growth by combined arc-plume action: evidence from the Kadiri Greenstone Belt, eastern Dharwar craton. India. Geol. Soc. London Spec. Publ., no.389. doi:https://doi.org/10.1144/SP389.

  • Dey, S., Pal, S., Balakrishnan, S., Halla, J., Kurhila, M. and Heilimo, E. (2018) Both plume and arc: Origin of Neoarchaean crust as recorded in Veligallu greenstone belt, Dharwar craton, India. Precambrian Res., v.314, pp.41–61.

    Article  Google Scholar 

  • Eby, G. N. (1990) The A-type granitoids; a review of their occurrence and chemical characteristics and speculation on their petrogenesis. Lithos, v.26, pp.115–134.

    Article  Google Scholar 

  • Edwards, G.R. and Hodder, R. W. (1991) A semi-quantitative model for fractionation of rhyolite from rhyodacite in a compositionally altered Archean volcanic complex, Superior Province, Canada. Precambrian Res., v.50, pp.49–67.

    Article  Google Scholar 

  • Erlank, A.J., Marsh, J.S., Duncan, A.R., Miller, R.M. and Hawkesworth, C.J. (1984) Geochemistry and petrogenesis of the Etendeka volcanic rocks from SW Namibia. In: Petrogenesis of the Volcanic Rocks of the Karoo Province. Geol. Soc. South Africa (Spec. Publ.), v.13, pp.195–247.

  • Falloon, T.J., Danyushevsky, L.V., Crawford, A.J., Meffre, S., Woodhead, J.D. and Bloomer, S.H. (2008) Boninites and adakites from the northern termination of the Tonga trench: implications for adakite petrogenesis. Jour. Petrol., v.49, pp.697–715.

    Article  Google Scholar 

  • Foley, S.F., Barth, M.G. and Jenner, G.A. (2000) Rutile/melt partition coefficients for trace elements and an assessment of the influence of rutile on the trace element characteristics of subduction zone magmas. Geochim. Cosmochim. Acta, v.64, pp.933–938.

    Article  Google Scholar 

  • Friend, C.R.L. and Nutman, A.P. (1991) SHRIMP U-Pb geochronology of the Closepet granite and Peninsular gneisses, Karnataka, South of India. Jour. Geol. Soc. India, v.38, pp.357–368.

    Google Scholar 

  • Friend, C.R.L. and Nutman, A.P. (1992) Response of U-Pb isotopes and whole rock geochemistry to CO2 induced granulite metamorphism, Kabbaldurga, Karnataka, south India. Contrib. Mineral. Petrol., v.111, pp.299–310.

    Article  Google Scholar 

  • Gupta, S., Rai, S. S., Prakasam, K. S., Srinagesh, D., Bansal, B. K., Chadha, R.K., Priestley, K., and Gaur, V.K. (2003) The nature of the crust in southern India: implications for Precambrian crustal evolution. Geophys. Res. Lett., v.30, pp.14–19, doi:https://doi.org/10.1029/2002GL016770

    Article  Google Scholar 

  • Hachida, H. and Arai, F. (1983) Extensive ash falls in and around the Sea of Japan from large late Quaternary eruptions. Jour. Volcanol. Geothermal Res., v.18, pp.151–164.

    Article  Google Scholar 

  • Hatton, C. J. and Sharpe, M. R. (1989) Significance and origin of boninite-like rocks associated with the Bushveld complex. In: Crawford, A.J. (Ed.), Boninites and Related Rocks. Unwin Hyman, London, pp.174–207.

    Google Scholar 

  • Hoffmann, J. E., Svahnberg, H., Piazolo, S., Scherstén, A. and Münker, C. (2012) The geodynamic evolution of Mesoarchean anorthosite complexes inferred from the NaajatKuuat Complex, southern West Greenland. Precambrian Res., v. 196 & 197, pp.149–170.

    Article  Google Scholar 

  • Hokada, T., Horiea, K., Satish-Kumar, M., Ueno Yuichiro, Nasheeth, A., Mishima, K. and Shiraishi, K. (2013) An appraisal of Archaean supracrustal sequences in Chitradurga Schist Belt, Western Dharwar Craton, Southern India. Precambrian Res., v.227, pp.99–119.

    Article  Google Scholar 

  • Hollings, P., Wyman, D. and Kerrich, R. (1999) Komatiite-basalt-rhyolite volcanic associations in northern Superior Province greenstone belts: significance of plume-arc interaction in the generation of proto continental Superior Province. Lithos, v.46, pp.137–161.

    Article  Google Scholar 

  • Hoskin, P.W.O., Kinny, P. D., Wyborn, D. and Chappell, B.W. (2000) Identifying accessory mineral saturation during differentiation in granitoid magmas: an integral approach. Jour. Petrol., v.41, pp.1365–96.

    Article  Google Scholar 

  • Hunter, A. G. and Blake, S. (1995) Petrogenetic evolution of a coexisting tholeiitic and calcalkaline magma series: Towada volcano, Japan. Jour. Petrol., v.36, pp.1579–1605.

    Google Scholar 

  • Hunter, A.G. (1998) Intracrustal controls on the coexistence of tholeiitic and calc-alkaline magma series at Aso Volcano, SW Japan. Jour. Petrol., v.39, pp.1255–1284.

    Article  Google Scholar 

  • Jayananda, M., Martin, H., Peucat, J. J. and Mahabaleshwar, B. (1995) Late Archaean crust mantle interaction: geochemistry of LREE enriched mantle derived magmas, Example of the Closepet batholith, Southern India. Contrib. Mineral. Petrol., v.119, pp.314–329.

    Article  Google Scholar 

  • Jayananda, M., Moyen, J. F., Martin, H., Peucat, J. J., Auvray, B. and Mahabaleswar, B. (2000) Late Archaean (2550–2520 Ma) juvenile magmatism in the Eastern Dharwar craton, southern India: constraints from geochronology, Nd-Sr isotopes and whole rock geochemistry. Precambrian Res., v.99, pp.225–254.

    Article  Google Scholar 

  • Jayananda, M., Chardon, D., Peucat, J.J. and Capdevila, R. (2006) 2.61 Ga potassic granites and crustal reworking in the western Dharwar craton, southern India: tectonic, geochronologic and geochemical constraints. Precambrian Res., v.150, pp.1–26.

    Article  Google Scholar 

  • Jayananda, M., Kano, T., Peucat, J.J. and Channabasappa, S. (2008) 3.35 Ga komatiite volcanism in the western Dharwar craton, southern India: constraints from Nd isotopes and whole-rock geochemistry. Precambrian Res., v.162, pp.160–179.

    Article  Google Scholar 

  • Jayananda, M., Peucat, J.J., Chardon, D., Krishna Rao, B.C., Fanning, C.M. and Corfu, F. (2013) Neoarchean greenstone volcanism and continental growth, Dharwar craton, southern India: Constraints from SIMS U-Pb zircon geochronology and Nd isotopes. Precambrian Res., v.227, pp.55–76.

    Article  Google Scholar 

  • Jayananda, M., Chardon, D., Peucat, J.J., Tushipokla and Fanning, C.M. (2015) Paleo- to Mesoarchean TTG accretion and continental growth in the western Dharwar craton, Southern India: Constraints from SHRIMP U-Pb zircon geochronology, whole-rock geochemistry and Nd-Sr isotopes. Precambrian Res., v.268, pp.295–322.

    Article  Google Scholar 

  • Jayananada, M., Santosh, M. and Aadhiseshan, K.R. (2018) Formation of Archean (3600–2500 Ma) continental crust in the Dharwar Craton, southern India. Earth-Sci. Rev., v.181, pp.12–42.

    Article  Google Scholar 

  • Kim, N., Cheong, C. S., Park, K.H., Kim, J. and Song, Y. S. (2012) Crustal Evolution of northeastern Yeongnam Massif, Korea, revealed by SHRIMP U-Pb zircon geochronology and geochemistry. Gondwana Res., v.21, pp.865–875.

    Article  Google Scholar 

  • Klemme, S., Blundy, J.D. and Wood, B.J. (2002) Experimental constraints on major and trace element partitioning during partial melting of eclogite. Geochim. Cosmochim. Acta, v.66, pp.3109–3123.

    Article  Google Scholar 

  • Krogstad, E.J., Hanson, G.N. and Rajamani, V. (1991) U-Pb ages of zircon and sphene for two gneiss terranes adjacent to the Kolar schist belt, south India; evidence for separate crustal evolution histories. Jour. Geol., v.99, pp.801–815.

    Article  Google Scholar 

  • Laurent, O., Martin, H., Moyen, J.F. and Doucelance, R. (2014) The diversity and evolution of late-Archean granitoids: evidence for the onset of modernstyle plate tectonics between 3.0 and 2.5 Ga. Lithos, v.205, pp.208–235.

    Article  Google Scholar 

  • Leat, P.T., Jackson, S.E., Thorpe, R. S. and Stillman, C. J. (1986) Geochemistry of bimodal basalt-subalkaline/peralkaline-rhyolite provinces within the Southern British Caledonides. Jour. Geol. Soc., London, v.143, pp.259–276.

    Article  Google Scholar 

  • Lesher, C.M., Goodwin, A.M., Campbell, I.H. and Gorton, M.P. (1986) Trace element geo-chemistry of ore associated and barren felsic metavolcanic rocks in the Superior Province, Canada. Canadian Jour. Earth Sci., v.23, pp.222–237.

    Article  Google Scholar 

  • Li, X.H., Li, Z.-X., Zhou H., Liu Y. and Kinny, P.D. (2002) U-Pb zircon geochronology, geochemistry and Nd isotopic study of Neoproterozoic bimodal volcanic rocks in the Kangdian Rift of South China: implications for the initial rifting of Rodinia. Precambrian Res., v. 113, pp. 135–154.

    Article  Google Scholar 

  • Macpherson, C.G., Dreher, S.C. and Thirlwall, M.F. (2006) Adakites without slab melting: High pressure differentiation of island arc magma, Mindanao, the Philippines. Earth Planet. Sci. Lett., v.243, pp.581–593.

    Article  Google Scholar 

  • Manikyamba, C. and Khanna, T.C. (2007) Crustal growth processes as illustrated by the Neoarchaean intraoceanic magmatism from Gadwal greenstone belt, Eastern Dharwar Craton, India. Gondwana Res., v.11, pp.476–491.

    Article  Google Scholar 

  • Manikyamba C., Kerrich, R., Khanna T.C., Krishna, A.K. and Satyanarayanan, M. (2008) Geochemical systematics of komatiite-tholeiite and adakite-arc basalt associations: the role of a mantle plume and convergent margin in formation of the Sandur Superterrane, Dharwar craton. Lithos, v.106, pp.155–172.

    Article  Google Scholar 

  • Manikyamba, C., Kerrich, R., Khanna, T.C., Satyanarayanan, M. and Krishna, A.K. (2009) Enriched and depleted arc basalts, with high-Mg andesites and adakites: a potential paired arc-back arc of the 2.7Ga Hutti greenstone terrane, India. Geochim. Cosmochim. Acta, v.73, pp.1711–1736.

    Article  Google Scholar 

  • Manikyamba, C., Ganguly, S., Santosh, M., Saha, A., Chatterjee, A. and Khelen, A.C. (2015) Neoarchean arc-juvenile back-arc magmatism in eastern Dharwar Craton, India: Geochemical fingerprints from the basalts of Kadiri greenstone belt. Precambrian Res., v.258, pp.1–23.

    Article  Google Scholar 

  • Maya, J.M., Bhutani, R., Balakrishnan, S. and Sandhya, R. (2017) Petrogenesis of 3.15 Ga old Banasandra komatiites from the Dharwar craton, India: Implications for early mantle heterogeneity. Geoscience Frontiers, v.8, pp.467–481.

    Article  Google Scholar 

  • Meen, J. K, Rogers, J.J.W. and Fullagar, P. D. (1992) Lead isotopic compositions of the western Dharwar craton, southern India: Evidence for distinct middle Archaean terranes in late Archaean craton. Geochim. Cosmochim. Acta, v.56, pp.2455–2470.

    Article  Google Scholar 

  • Moyen, J. F., Nedelec, A., Martin, H. and Jayananda, M. (2003) Syntectonic granite emplacement at different structural levels: the Closepet granite, South India. Jour. Struct. Geol., v.25, pp.611–631.

    Article  Google Scholar 

  • Naqvi, S.M., Manikyamba, C, Gnaneshwar Rao, T., Subba Rao, D.V., Ram Mohan, M. and Srinivasa Sarma, D. (2002) Geochemical and isotopic constraints of fossil plumes for the evolution of the volcanic rocks of the Sandur greenstone belt, India. Jour. Geol. Soc. India, v.60, pp.27–56

    Google Scholar 

  • Naqvi, S., Khan, R., Manikyamba, C., Mohan, M. and Khanna, T. (2006) Geochemistry of the Neoarchaean high-Mg basalts, boninites and adakites from the Kushtagi-Hungund greenstone belt of the Eastern Dharwar Craton (EDC); implications for the tectonic setting. Jour. Asian Earth Sci., v.27, pp.25–44.

    Article  Google Scholar 

  • Nutman, A. P., Chadwick, B., Krishna Rao, B. and Vasudev, V. N. (1996) SHRIMP U-Pb zircon ages of acid volcanic rocks in the Chitradurga and Sandur Groups, and granites adjacent to the Sandur schist belt, Karnataka. Jour. Geol. Soc. India, v.47, pp.153–164.

    Google Scholar 

  • Ojakangas, R.W., Srinivasan, R., Hegde, V. S., Chandrakant, S. M. and Srikantia, S.V. (2014) The Talya Conglomerate: an Archean (∼ 2.7 Ga) Glaciomarine Formation, Western Dharwar Craton, Southern India. Curr. Sci., v.106, pp.387–396.

    Google Scholar 

  • Pearce, J.A. and Peate, D.W. (1995) Tectonic implications of the composition of volcanic arc magmas. Annual Review of Earth and Planetary Sciences, v.23, pp.251–285.

    Article  Google Scholar 

  • Peucat, J.J., Mahabaleswar, B. and Jayananda, M. (1993) Age of younger tonalitic magmatism and granulitic metamorphism in the South Indian transition zone (Krishnagiri area): Comparison with older Peninsular gneisses from the Gorur-Hassan area. Jour. Metamorphic Geol., v.11, pp.879–888.

    Article  Google Scholar 

  • Peucat, J.J., Bouhallier, H., Fanning, C.M. and Jayananda, M. (1995) Age of the Holenarsipur greenstone belt, relationships with the surrounding gneisses (Karnataka, South India). Jour. Geol., v.103, pp.701–710.

    Article  Google Scholar 

  • Polat, A., Kerrich, R. and Wyman, D. A. (1998) The Late Archaean Schreiber Hemlo and White River Dayohessarah greenstone belt, Superior Province: collages of oceanic plateau, oceanic arcs and subduction accretion complexes. Tectonophysics, v.289, pp.295–326.

    Article  Google Scholar 

  • Polat, A. and Kerrich, R. (1999) Formation of an Archean tectonic mélange in the Schreiber-Hemlo greenstone belt, Superior Province, Canada: Implications for Archean subduction-accretion process. Tectonics, v.18, pp.733–755.

    Article  Google Scholar 

  • Polat, A. and Hofmann, A.W. (2003) Alteration and geochemical patterns in the 3.7–3.8 Ga Isua greenstone belt, west Greenland. Precambrian Res., v.126, pp.197–218.

    Article  Google Scholar 

  • Polat, A., Appel, P.W.U., Fryer, B., Windley, B., Frei, R., Samson, I. M. and Huang, H. (2009) Trace element systematics of the Neoarchean Fiskenæsset anorthosite complex and associated meta-volcanic rocks, SW Greenland: evidence for a magmatic arc origin. Precambrian Res., v.175, pp.87–115.

    Article  Google Scholar 

  • Polat, A., Appel, P.W.U. and Fryer, B.J. (2011) An overview of the geochemistry of Eoarchean to Mesoarchean ultramafic to mafic volcanic rocks, SW Greenland: implications for mantle depletion and petrogenetic processes at subduction zones in the early Earth. Gondwana Res., v.20, pp.255–283.

    Article  Google Scholar 

  • Rajamani, V., Shivkumar, K., Hanson, G.N. and Shirey, S.B. (1985) Geochemistry and petrogenesis of amphibolites from the Kolar schist belt, South India: evidence for ultramafic magma generation by low percent melting. Jour. Petrol., v.26, pp.92–123.

    Article  Google Scholar 

  • Rajamanickam, M., Balakrishnan, S. and Bhutani, R. (2014) Rb-Sr and Sm-Nd isotope systematics and geochemical studies on metavolcanic rocks from Peddavura greenstone belt: Evidence for presence of Mesoarchean continental crust in easternmost part of Dharwar Craton, India. Jour. Earth System Sci., v.123, pp.989–1011.

    Article  Google Scholar 

  • Ram Mohan, M., Sarma, D. S., Charam, S.N., Balaram, V., Rajasekhar, V. B. and Ahmed, T. (2008) Geochemistry and petrogenesis of amphibolites from the southern part of the Gadag greenstone belt, Karnataka. Jour. Geol. Soc. India, v.72, pp.484–494.

    Google Scholar 

  • Ram Mohan, M., Piercey, S.J., Kamber, B.S. and Sarma, D.S. (2013) Subduction related tectonic evolution of the Neoarchean eastern Dharwar Craton, southern India: new geochemical and isotopic constraints. Precambrian Res., v. 227, pp. 204–226.

    Article  Google Scholar 

  • Ram Mohan, M., Sarma, S. D., McNaughton, N.J., Fletcher, I. R., Wilde, A., Siddique, Md. A., Rasmussen, B., Krapez, B., Gregory, C.J., and Kamo, S.L. (2014) SHRIMP Zircon and titanite U-Pb ages, Lu-Hf isotope signatures and geochemical constraints for 2.56 Ga granitic magmatism in Western Dharwar craton, Southern India: Evidence for short lived Neo-archaean episodic crustal growth? Precambrian Res., v.243, pp.197–220

    Article  Google Scholar 

  • Ramadas, G., Ramaprasad Rao, I. B., Srinivasalu, N. and Himabindu, D. (2003) Density studies in the Dharwar Craton along the Jaelcharla-Goa Subtransect. Jour. Geol. Soc. India, v.61, pp.439–448.

    Google Scholar 

  • Rapp, R.P., Watson, E.B. and Miller, C.F. (1991) Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites. Precambrian Res., v.51, pp.1–25.

    Article  Google Scholar 

  • Rogers, A. J., Kolb, J., Meyer, F. M. and Armstrong, R. A. (2007) Tectonomagmatic evolution of the Hutti-Maski Greenstone Belt, India: constrained using geochemical and geochronological data. Jour. Asian Earth Sci., v.31, pp.55–70.

    Article  Google Scholar 

  • Santosh, M., Yang, Q.Y., Shaji, E., Tsunogae, T., Ram Mohan, M. and Satyanarayanan, M. (2015) An exotic Mesoarchean microcontinent: the Coorg Block, southern India. Gondwana Res., v.27, pp.165–195.

    Article  Google Scholar 

  • Sarma, D. S., McNaughton, N. J., Fletcher, I.R., Groves, D. I., Mohan, M. R. and Balaram, V. (2008) Timing of gold mineralisation in the Hutti gold deposit, Dharwar Craton, South India. Econ. Geol., v.103, pp.1715–1727.

    Article  Google Scholar 

  • Sarma, D. S., Fletcher, I. R., Rasmussen, B., McNaughton, N. J., Ram Mohan, M. and Groves, D. I. (2011) Archean gold mineralisation of the western Dharwar craton, India: 2.52 Ga U-Pb ages of hydrothermal monazite and xenotime in gold deposits. Mineralium Deposita, v.46, pp.273–288.

    Article  Google Scholar 

  • Sarma, D.S., McNaughton, N.J., Belousova, E., Ram Mohan, M. and Fletcher, I.R. (2012) Detrital. U-Pb ages and Hf isotope systematic from the Gadag greenstone belt; Archaean crustal growth in Western Dharwar Craton. Gondwana Res., v.22, pp.843–854.

    Article  Google Scholar 

  • Sengupta, S. and Roy, A. (2012) Tectonic amalgamation of crustal blocks along Gadag-Mandya shear zone in Dharwar Craton of southern India. Jour. Geol. Soc. India, v.80, pp.75–88.

    Article  Google Scholar 

  • Shellnutt, J. G. (2018) Derivation of intermediate to silicic magma from the basalt analyzed at the Vega 2 landing site, Venus. PLOS ONE, pp.1-25, doi: https://doi.org/10.1371/journal.pone.0194155

  • Shuto, K., Sato, M., Kawabata, H., Osanai, Y., Nakano, N. and Yashima, R. (2013) Petrogenesis of Middle Miocene primitive basalt, andesite and garnet-bearing adakitic rhyodacite from the Ryozen Formation: Implications for the tectono-magmatic evolution of the NE Japan arc. Jour. Petrol., v.54, pp.2413–2454, doi: https://doi.org/10.1093/petrology/egt052

    Article  Google Scholar 

  • Straub, S.M. and Zellmer, G.F. (2011) Volcanic arcs as archives of plate tectonic change. Gondwana Res., v.21, pp.495–516.

    Article  Google Scholar 

  • Sun, S.S. and McDonough, W.F. (1989) Chemical and isotopic systematics of oceanic basalts; implications for mantle composition and processes. In: Saunders, A.D., Norry, M.J. (Eds) Magmatism in the ocean basins. Geol. Soc. London, Spec. Publ., no.42, pp.313-345.

  • Swami Nath, J., Ramakrishnan, M. and Viswanatha, M.N. (1976) Dharwar stratigraphic model and Karnataka craton evolution. Rec. Geol. Surv. India, v.107, pp.149–175.

    Google Scholar 

  • Taylor, P.N., Chadwick, B., Moorbath, S., Friend, C.R.L., Ramakrishnan, M. and Viswanatha, M.N. (1984) Petrography, chemistry and isotope ages of Peninsular gneiss, Dharwar acid volcanic rocks and Chitradurga granite with special reference to the late Archaean evolution of the Karnataka craton. Precambrian Res., v.23, pp.349–375.

    Article  Google Scholar 

  • Taylor, S.R. and McLennan, S.M. (1985) The continental crust: its composition and evolution. Blackwell Scientific Publications, Oxford, 312 p.

    Google Scholar 

  • Trendall, A.F., de Laeter, J.R., Nelson, D.R. and Bhaskar Rao, Y.J. (1997) Further zircon U-Pb age data for the Daginkatte formation, Dharwar Supergroup, Karnataka craton. Jour. Geol. Soc. India, v.50, pp.25–30.

    Google Scholar 

  • Trendall, A.F., de Laeter, J.R., Nelson, D. R. and Mukhopadhyay, D. (1997) A precise U-Pb age for the base of Mulaingiri formation (Bababudan Group, Dharwar Supergroup) of the Karnataka craton. Jour. Geol. Soc. India, v.50, pp.161–170.

    Google Scholar 

  • Ugarkar, A. G. and Devaraju, T. C. (1994) Ore mineralogy of western auriferous zone of Gadag greenstone belt, Karnataka. Jour. Geol. Soc. India, v.43, pp.549–555.

    Google Scholar 

  • Ugarkar, A.G., Panaskar, D. B. and Ranganath Gowda, G. (2000) Geochemistry, Petrogenesis and Tectonic setting of metavolcanics and their implications for gold mineralization in Gadag Gold Field, Southern India. Gondwana Research, v. 3, pp. 371–384.

    Article  Google Scholar 

  • Ugarkar, A. G. and Nyamti, R. C. (2002) Geochemical characteristics of Archaean clastic metasediments of Gadag Gold Field, Southern India: Implications for provenance and tectonic setting. Gondwana Research, v. 5, pp. 245–255.

    Article  Google Scholar 

  • Ugarkar, A. G. Malapur, M.A. and Chandan Kumar, B. (2016) Archean turbidite hosted orogenic gold mineralization in the Gadag greenstone belt, Western Dharwar Craton, Peninsular India. Ore Geol. Rev., v.72, pp.1224–1242, doi:https://doi.org/10.1016/j.oregeorev.2015.06.020

    Article  Google Scholar 

  • Van Kranendonk, M. J., Smithies, H. R., Hickman, A. H. and Champion, D. C. (2007) Review: secular tectonic evolution of Archean continental crust: interplay between horizontal and vertical processes in the formation of the Pilbara Craton, Australia. Terra Nova, v.19, pp.1–38.

    Article  Google Scholar 

  • Vasudev, V.N., Chadwick, B., Nutman, A.P. and Hedge, G.V. (2000) Rapid development of the Late Archaean Hutti schist belt, Northern Karnataka: Implications of new field data and SHRIMP U-Pb zircon ages. Jour. Geol. Soc. India, v.55, pp.529–540.

    Google Scholar 

  • Watson, E. B. and Harrison, T. M. (1984) Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth Planet. Sci. Lett., v.64, pp.295–304.

    Article  Google Scholar 

  • Winchester, J. A. and Floyd, P. A. (1977) Geochemical differentiation of different magma series and their differentiation products using immobile elements. Chemical Geol., v.20, pp.325–343.

    Article  Google Scholar 

  • Zachariah, J. K., Mohanta, M. K. and Rajamani, V. (1996) Accretionary evolution of the Ramagiri schist belt, eastern Dharwar craton. Jour. Geol. Soc. India, v.47, pp.279–291.

    Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the Ministry of Earth Sciences Govt of India (No.MoES/P/O.(Geosci)/35/2014) and SDM College of Engineering and Technology, Dharwad, for providing the financial support and laboratory facility to carry out the present work. The authors sincerely thank the Wadia Institute of Himalayan Geology, Dehradun for the facility extended to carry out the geochemical analysis and the Geological Survey of India, Bangalore, for the facility extended to carry out the electron microprobe analysis. All the anonymous reviewers are thanked for their constructive comments and useful suggestions on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Hedge.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hedge, V.S., Corfu, F., Frimmel, H.E. et al. Neoarchaean Felsic Volcanic Rocks in Tracing Evolution of Arcs: An Insight from Geochemical Data of the Gadag Schist Belt, Western Dharwar Craton. J Geol Soc India 97, 351–362 (2021). https://doi.org/10.1007/s12594-021-1693-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-021-1693-3

Navigation