Skip to main content
Log in

Adsorption time scales of cluster-forming systems

  • Regular Article - Soft Matter
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

A microscopic model of adsorption in cluster forming systems with competing interaction is considered. The adsorption process is described by the master equation and modelled by a kinetic Monte Carlo method. The evolution of the particle concentration and interaction energy during the adsorption of particles on a plane triangular lattice is investigated. The simulation results show a diverse behavior of the system time evolution depending on the temperature and chemical potential and finally on the formation of clusters in the system. The characteristic relaxation times of adsorption vary in several orders of magnitude depending on the thermodynamic parameters of the final equilibrium state of the adsorbate. A very fast adsorption of particles is observed for highly ordered adsorbate equilibrium states.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: All data included in this manuscript are available upon request by contacting the corresponding author at eldar.bildanov@gmail.com.]

References

  1. F. Cardinaux, E. Zaccarelli, A. Stradner, S. Bucciarelli, B. Farago, S.U. Egelhaaf, F. Sciortino, P. Schurtenberger, Cluster-driven dynamical arrest in concentrated lysozyme solutions. J. Phys. Chem. B 115(22), 7227–7237 (2011)

    Article  Google Scholar 

  2. J.D. Gunton, A. Shiryayev, D.L. Pagan, Protein Condensation: Kinetic Pathways to Crystallization and Disease (Cambridge University Press, Cambridge, 2007)

    Book  Google Scholar 

  3. R.J. Hunter, Foundations of Colloid Science (Oxford University Press, Oxford, 2001)

    Google Scholar 

  4. L. Isa, I. Buttinoni, M.A. Fernandez-Rodriguez, S.A. Vasudevan, Two-dimensional assemblies of soft repulsive colloids confined at fluid interfaces. Europhys. Lett. 119(2), 26001 (2017)

    Article  ADS  Google Scholar 

  5. S.A. Vasudevan, A. Rauh, L. Barbera, M. Karg, L. Isa, Stable in bulk and aggregating at the interface: Comparing core-shell nanoparticles in suspension and at fluid interfaces. Langmuir 34(3), 886–895 (2018)

    Article  Google Scholar 

  6. A. Sheverdin, C. Valagiannopoulos, Core-shell nanospheres under visible light: Optimal absorption, scattering, and cloaking. Phys. Rev. B 99(7), 075305 (2019)

    Article  ADS  Google Scholar 

  7. F. Bergaya, G. Lagaly, Handbook of Clay Science, 2nd edn. (Elsevier, Oxford, 2013)

    Google Scholar 

  8. A.S. Dimitrov, K. Nagayama, Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces. Langmuir 12(5), 1303–1311 (1996)

    Article  Google Scholar 

  9. S. Chattopadhyay, Y.F. Huang, Y.-J. Jen, A. Ganguly, K.H. Chen, L.C. Chen, Anti-reflecting and photonic nanostructures. Mater. Sci. Eng.: R: Rep. 69(1–3), 1–35 (2010)

    Article  Google Scholar 

  10. L. Yao, J. He, Recent progress in antireflection and self-cleaning technology-from surface engineering to functional surfaces. Progr. Mater. Sci. 61, 94–143 (2014)

    Article  Google Scholar 

  11. D.E. Graham, M.C. Phillips, Proteins at liquid interfaces: III. molecular structures of adsorbed films. J. Coll. Interface Sci. 70(3), 427–439 (1979)

    Article  ADS  Google Scholar 

  12. C.J. Beverung, C.J. Radke, H.W. Blanch, Protein adsorption at the oil/water interface: characterization of adsorption kinetics by dynamic interfacial tension measurements. Biophys. Chem. 81(1), 59–80 (1999)

    Article  Google Scholar 

  13. C.F. Wertz, M.M. Santore, Adsorption and relaxation kinetics of albumin and fibrinogen on hydrophobic surfaces: single-species and competitive behavior. Langmuir 15(26), 8884–8894 (1999)

    Article  Google Scholar 

  14. K. Daniel, Schwartz, Mechanisms and kinetics of self-assembled monolayer formation. Annu. Rev. Phys. Chem. 52(1), 107–137 (2001)

    Article  Google Scholar 

  15. R. Marie, H. Jensenius, J. Thaysen, C.B. Christensen, A. Boisen, Adsorption kinetics and mechanical properties of thiol-modified dna-oligos on gold investigated by microcantilever sensors. Ultramicroscopy 91(1–4), 29–36 (2002)

    Article  Google Scholar 

  16. F. Schreiber, Self-assembled monolayers: from ‘simple’ model systems to biofunctionalized interfaces. J. Phys.: Condens. Matter 16(28), R881 (2004)

    ADS  Google Scholar 

  17. M. Rabe, D. Verdes, S. Seeger, Understanding protein adsorption phenomena at solid surfaces. Adv. Coll. Interface Sci. 162(1–2), 87–106 (2011)

    Article  Google Scholar 

  18. E.A. Vogler, Protein adsorption in three dimensions. Biomaterials 33(5), 1201–1237 (2012)

    Article  Google Scholar 

  19. B.B. Langdon, M. Kastantin, D.K. Schwartz, Apparent activation energies associated with protein dynamics on hydrophobic and hydrophilic surfaces. Biophys. J. 102(11), 2625–2633 (2012)

    Article  ADS  Google Scholar 

  20. A. Hasan, L.M. Pandey, Kinetic studies of attachment and re-orientation of octyltriethoxysilane for formation of self-assembled monolayer on a silica substrate. Mater. Sci. Eng.: C 68, 423–429 (2016)

    Article  Google Scholar 

  21. H. Nygren, S. Alaeddin, I. Lundström, K.E. Magnusson, Effect of surface wettability on protein adsorption and lateral diffusion. Analysis of data and a statistical model. Biophys. Chem. 49(3), 263–272 (1994)

    Article  Google Scholar 

  22. V. Ball, J.J. Ramsden, Absence of surface exclusion in the first stage of lysozyme adsorption is driven through electrostatic self-assembly. J. Phys. Chem. B 101(28), 5465–5469 (1997)

    Article  Google Scholar 

  23. A. Herrig, M. Janke, J. Austermann, V. Gerke, A. Janshoff, Claudia Steinem, Cooperative adsorption of ezrin on pip2-containing membranes. Biochemistry 45(43), 13025–13034 (2006)

    Article  Google Scholar 

  24. M. van der Veen, Martien Cohen Stuart, Willem Norde, Spreading of proteins and its effect on adsorption and desorption kinetics. Colloids and Surfaces B: Biointerfaces 54(2), 136–142 (2007)

    Article  Google Scholar 

  25. M. Rabe, D. Verdes, J. Zimmermann, S. Seeger, Surface organization and cooperativity during nonspecific protein adsorption events. J. Phys. Chem. B 112(44), 13971–13980 (2008)

    Article  Google Scholar 

  26. M. Rabe, D. Verdes, S. Seeger, Understanding cooperative protein adsorption events at the microscopic scale: a comparison between experimental data and monte carlo simulations. J. Phys. Chem. B 114(17), 5862–5869 (2010)

    Article  Google Scholar 

  27. F. Cardinaux, A. Stradner, P. Schurtenberger, F. Sciortino, E. Zaccarelli, Modeling equilibrium clusters in lysozyme solutions. Europhys. Lett. 77(4), 48004 (2007)

    Article  ADS  Google Scholar 

  28. Y. Zhuang, K. Zhang, P. Charbonneau, Equilibrium phase behavior of a continuous-space microphase former. Phys. Rev. Lett. 116(9), 098301 (2016)

    Article  ADS  Google Scholar 

  29. C.P. Royall, Hunting mermaids in real space: Known knowns, known unknowns and unknown unknowns. Soft Matter 14(20), 4020–4028 (2018)

    Article  ADS  Google Scholar 

  30. K. Huang, Statistical Mechanics (Wiley, New York, 1987)

    MATH  Google Scholar 

  31. J.A. Barker, D. Henderson, What is “liquid”? Understanding the states of matter. Rev. Mod. Phys. 48(4), 587 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  32. J.-P. Hansen, I.R. McDonald, Theory of Simple Liquids (Elsevier, Netherlands, 2006)

    MATH  Google Scholar 

  33. M. Seul, D. Andelman, Domain shapes and patterns: the phenomenology of modulated phases. Science 267(5197), 476–483 (1995)

    Article  ADS  Google Scholar 

  34. R.P. Sear, W.M. Gelbart, Microphase separation versus the vapor-liquid transition in systems of spherical particles. J. Chem. Phys. 110, 4582 (1999)

    Article  ADS  Google Scholar 

  35. J.P. Hansen, I.R. McDonald, Theory of Simple Liquids (Elsevier, Amsterdam, 1990)

    MATH  Google Scholar 

  36. A. Stradner, H. Sedgwick, F. Cardinaux, W.C.K. Poon, S.U. Egelhaaf, P. Schurtenberger, Equilibrium cluster formation in concentrated protein solutions and colloids. Nature 432, 492 (2004)

    Article  ADS  Google Scholar 

  37. Y. Zhuang, P. Charbonneau, Recent advances in the theory and simulation of model colloidal microphase formers. J. Phys. Chem. B 120(32), 7775–7782 (2016)

    Article  Google Scholar 

  38. A.P. Santos, J. Pȩkalski, A.Z. Panagiotopoulos, Thermodynamic signatures and cluster properties of self-assembly in systems with competing interactions. Soft Matter 13(44), 8055–8063 (2017)

    Article  ADS  Google Scholar 

  39. M. Litniewski, A. Ciach, Effect of aggregation on adsorption phenomena. J. Chem. Phys. 150(23), 234702 (2019)

    Article  ADS  Google Scholar 

  40. E. Bildanau, J. Pȩkalski, V. Vikhrenko, A. Ciach, Adsorption anomalies in a two-dimensional model of cluster-forming systems. Phys. Rev. E 101(1), 012801 (2020)

    Article  ADS  Google Scholar 

  41. A. Imperio, L. Reatto, Microphase separation in two-dimensional systems with competing interactions. J. Chem. Phys. 124, 164712 (2006)

    Article  ADS  Google Scholar 

  42. D.F. Schwanzer, G. Kahl, Two-dimensional systems with competing interactions: microphase formation versus liquid-vapour phase separation. J. Phys.: Condens. Matter 22(41), 415103 (2010)

    Google Scholar 

  43. J. Pȩkalski, A. Ciach, N.G. Almarza, Periodic ordering of clusters and stripes in a two-dimensional lattice model. I. ground state, mean-field phase diagram and structure of the disordered phases. J. Chem. Phys. 140, 114701 (2014)

    Article  ADS  Google Scholar 

  44. N.G. Almarza, J. Pȩkalski, A. Ciach, Two-dimensional lattice model for periodic ordering of clusters and stripes. II. monte carlo simulations. J. Chem. Phys. 140, 164708 (2014)

    Article  ADS  Google Scholar 

  45. B. Chacko, C. Chalmers, A.J. Archer, Two-dimensional colloidal fluids exhibiting pattern formation. J. Chem. Phys. 143(24), 244904 (2015)

    Article  ADS  Google Scholar 

  46. T. Das, T. Lookman, M.M. Bandi, A minimal description of morphological hierarchy in two-dimensional aggregates. Soft Matter 11(34), 6740–6746 (2015)

    Article  ADS  Google Scholar 

  47. J.A. Archer, Two-dimensional fluid with competing interactions exhibiting microphase separation: theory for bulk and interfacial properties. Phys. Rev. E 78(3), 031402 (2008)

    Article  ADS  Google Scholar 

  48. N.G. Almarza, J. Pȩkalski, A. Ciach, Effects of confinement on pattern formation in two dimensional systems with competing interactions. Soft Matter 12, 7551–7563 (2016)

    Article  ADS  Google Scholar 

  49. J. Pȩkkalski, E. Bildanau, A. Ciach, Self-assembly of spiral patterns in confined systems with competing interactions. Soft matter 15(38), 7715–7721 (2019)

    Article  ADS  Google Scholar 

  50. D.F. Schwanzer, D. Coslovich, G. Kahl, Two-dimensional systems with competing interactions: dynamic properties of single particles and of clusters. J. Phys.: Condens. Matt. 28(41), 414015 (2016)

    Google Scholar 

  51. H. Yi, P. Charbonneau, Clustering and assembly dynamics of a one-dimensional microphase former. Soft Matter 14(20), 4101–4109 (2018)

    Article  ADS  Google Scholar 

  52. Jian Zhou, Shengfu Chen, Shaoyi Jiang, Orientation of adsorbed antibodies on charged surfaces by computer simulation based on a united-residue model. Langmuir 19(8), 3472–3478 (2003)

    Article  Google Scholar 

  53. D. Pellenc, R.A. Bennett, R.J. Green, M. Sperrin, P.A. Mulheran, New insights on growth mechanisms of protein clusters at surfaces: an afm and simulation study. Langmuir 24(17), 9648–9655 (2008)

    Article  Google Scholar 

  54. G. Yu, J. Liu, J. Zhou, Mesoscopic coarse-grained simulations of lysozyme adsorption. J. Phys. Chem. B 118(17), 4451–4460 (2014)

    Article  Google Scholar 

  55. J. Pȩkalski, A. Ciach, N.G. Almarza, Bistability in a self-assembling system confined by elastic walls: exact results in a one-dimensional lattice model. J. Chem. Phys. 142, 014903 (2015)

    Article  ADS  Google Scholar 

  56. D.P. Landau, Finite-size behavior of the ising square lattice. Phys. Rev. B 13(7), 2997–3011 (1976)

    Article  ADS  Google Scholar 

  57. D.P. Landau, Critical and multicritical behavior in a triangular-lattice-gas ising model: Repulsive nearest-neighbor and attractive next-nearest-neighbor coupling. Phys. Rev. B 27(9), 5604–5617 (1983)

    Article  ADS  Google Scholar 

  58. A. Donald, McQuarrie, Stochastic approach to chemical kinetics. J. Appl. Probab. 4(3), 413–478 (1967)

    Article  MATH  Google Scholar 

  59. K. Binder, Monte carlo computer experiments on critical phenomena and metastable states. Adv. Phys. 23(6), 917–939 (1974)

    Article  ADS  Google Scholar 

  60. N.G. Van Kampen, Stochastic processes in chemistry and physics. Chaos (1981)

  61. A. Danani, R. Ferrando, E. Scalas, M. Torri, Lattice-gas theory of collective diffusion in adsorbed layers. Int. J. Mod. Phys. B 11(19), 2217–2279 (1997)

    Article  ADS  Google Scholar 

  62. G.S. Bokun, Y.G. Groda, C. Uebing, V.S. Vikhrenko, Statistical-mechanical description of diffusion in interacting lattice gases. Phys. A: Stat. Mech. Appl. 296(1–2), 83–105 (2001)

    Article  MATH  Google Scholar 

  63. T. Ala-Nissila, R. Ferrando, S.C. Ying, Collective and single particle diffusion on surfaces. Adv. Phys. 51(3), 949–1078 (2002)

    Article  ADS  Google Scholar 

  64. A.P.J. Jansen, An Introduction to Kinetic Monte Carlo Simulations of Surface Reactions, vol. 856 (Springer, New Jersey, 2012)

    MATH  Google Scholar 

  65. P.A.M. Dirac, The Principles of Quantum Mechanics (Oxford University Press, Oxford, 1958)

    Book  MATH  Google Scholar 

  66. S. Glegg, W. Devenport, Aeroacoustics of Low Mach Number Flows: Fundamentals, Analysis, and Measurement (Academic Press, London, 2017)

    Google Scholar 

  67. L.S. Jung, C.T. Campbell, Sticking probabilities in adsorption of alkanethiols from liquid ethanol solution onto gold. J. Phys. Chem. B 104(47), 11168–11178 (2000)

    Article  Google Scholar 

  68. R. Gomer, Diffusion of adsorbates on metal surfaces. Rep. Progr. Phys. 53(7), 917–1002 (1990)

    Article  ADS  Google Scholar 

  69. A. Sadiq, K. Binder, Kinetics of domain growth in two dimensions. Phys. Rev. Lett. 51(8), 674–677 (1983)

    Article  ADS  Google Scholar 

  70. C. Uebing, R. Gomer, A Monte Carlo study of surface diffusion coefficients in the presence of adsorbate-adsorbate interactions. I. repulsive interactions. J. Chem. Phys. 95(10), 7626–7635 (1991)

    Article  ADS  Google Scholar 

  71. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953)

    Article  ADS  MATH  Google Scholar 

  72. N. Ito, Non-equilibrium relaxation and interface energy of the ising model. Phys. A: Stat. Mech. Appl. 196(4), 591–614 (1993)

    Article  Google Scholar 

  73. K. Sekimoto, Stochastic Energetics, vol. 799 (Springer, New York, 2010)

    MATH  Google Scholar 

  74. M. Suzuki, Nonlinear critical slowing down in ergodic and in non-ergodic systems. Int. J. Magn. 1, 123–145 (1971)

    Google Scholar 

  75. H. Yukio Saito, Müller-Krumbhaar, Diffusion and relaxation kinetics in stochastic models for crystal growth. J. Chem. Phys. 70(3), 1078–1095 (1979)

    Article  ADS  Google Scholar 

  76. M. Kikuchi, N. Ito, Statistical dependence time and its application to dynamical critical exponent. J. Phys. Soc. Japan 62(9), 3052–3061 (1993)

    Article  ADS  Google Scholar 

  77. E. Stoll, K. Binder, T. Schneider, Monte carlo investigation of dynamic critical phenomena in the two-dimensional kinetic ising model. Phys. Rev. B 8(7), 3266 (1973)

    Article  ADS  Google Scholar 

  78. P.C. Hohenberg, B.I. Halperin, Theory of dynamic critical phenomena. Rev. Mod. Phys. 49(3), 435–479 (1977)

    Article  ADS  Google Scholar 

  79. S. Zhang, S. Qi, L.I. Klushin, A.M. Skvortsov, D. Yan, Friederike Schmid, Anomalous critical slowdown at a first order phase transition in single polymer chains. J. Chem. Phys. 147(6), 064902 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Alina Ciach for careful reading and fruitful discussion of the manuscript. This project has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 734276.

Author information

Authors and Affiliations

Authors

Contributions

All the authors were involved in the preparation of the manuscript. All the authors have read and approved the final manuscript.

Corresponding author

Correspondence to Eldar Bildanau.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bildanau, E., Vikhrenko, V. Adsorption time scales of cluster-forming systems. Eur. Phys. J. E 44, 51 (2021). https://doi.org/10.1140/epje/s10189-021-00059-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-021-00059-0

Navigation