Skip to main content
Log in

Carbonate–Alkaline Metasomatites of the Peschanoe Uranium Occur (Western Baikal Region): Mineral-Geochemical and Isotope-Geochemical Characteristics

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract—Metasomatic alterations in cataclased granites of the Primorsky Complex PR1 in the Southern Siberian Craton are represented by albitization and riebeckitization, accompanied by microclinization, dolomitization and completed by the formation of hydrothermal quartz–carbonate veins. Albitization, epidotization, and carbonatization are occurred in the host metavolcanics. Mineral parageneses and mineral thermometry data indicate the occurrence of hydrothermal–metasomatic processes in the temperature range from 400–500 to 200‒250°С. Calcite deposited at an early stage has values of δ13С –(3.2–3.3)‰ and δ18O +(8.3–9.4)‰, ferruginous dolomite δ13С –(1.6–1.9)‰ and δ18O +(10.6–11.1)‰. The calculated values of δ13C in CO2 contained in the fluid from which calcite was deposited at 450°C (about –0.7 to 0.8‰) indicate marine carbonates as the source of CO2; the calculated values of δ18O in a fluid in equilibrium with calcite (from +5.4 to +6.5‰) show that the fluid underwent isotopic exchange with magmatic silicate rocks at elevated temperatures and a low fluid-rock ratio. The initial (87Sr/86Sr)t ratio in newly formed calcite (0.718087) and dolomite (0.712033) and εNdT = –(7.3–8.2) indicate the leading role of an upper crustal source of material. The maximum U concentration (52 ppm on average) contains albite–biotite–magnetite schists at the contact with altered granites. The U concentrators in metasomatically altered rocks are the crichtonite group minerals, zircon, and thorite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

Notes

  1. XMg = Mg/(Mg + Fe2+).

  2. XMg = Mg/(Mg + Fe).

  3. LnCe, cerium lanthanides; La–Nd; LnSm, samarium lanthanides, Sm–Dy; LnEr, erbium lanthanides, Ho–Lu.

  4. Kag = (Na + K)/Al, mol. amount.

  5. The correlation coefficients were calculated for apogranite metasomatites in general due to insufficient number of analyses.

REFERENCES

  1. Alexandre, P., Mineralogy and geochemistry of the sodium metasomatism-related uranium occurrence of Aricheng South, Guyana, Miner. Deposita, 2010, vol. 45, pp. 351–367. https://doi.org/10.1007/s00126-010-0278-7

    Article  Google Scholar 

  2. Aranovich, L.Ya., The role of brines in high-temperature metamorphism and granitization, Petrology, 2017, vol. 25, no. 5, pp. 486–497. https://doi.org/10.7868/S0869590317050028

    Article  Google Scholar 

  3. Arbuzov, S.I. and Rikhvanov, L.P., Geokhimiya radioaktivnykh elementov: Uchebnoe posobie (Geochemistry of Radioactive Elements. A Textbook), Tomsk: TPU, 2009.

  4. Armbruster, T., Bonatstsi, P., Akasaka, M., Bermanets, V., Shopen, K., Zhire, R., Kheus-Assbikhler, S., Leibsher, A., Menchetti, S., Pan, Ya., and Pazero, M., Recommended nomenclature of epidote–group minerals (a brief information), Zap. Ross. Mineral. O-va, 2006, no. 6, pp. 19–23.

  5. Belevtsev, Ya.N., Domarev, V.S., Kulish, E.A., Koval’, V.B., Epatko, Yu.M., Makarov, V.N., Grechishnikov, N.P., and Lebedev, Yu.S., Metamorfogennoe pudoobrazovanie v dokembrii. Formatsii metamorfogennykh rudnykh mestorozhdenii (Metamorphogenic Ore Formation in the Precambrian. Formations of Metamorphogenic Ore Deposits), Kiev: Nauk. dumka, 1986.

  6. Brod, J.A., Gaspar, J.C., de Araujo, D.P., Gibson, S.A., Thompson, R.N., and Junqueira-Brod, T.C., Phlogopite and tetra–ferriphlogopite from Brazilian carbonatite complexes: petrogenetic constraints and implications for mineral–chemistry systematics, J. Asian Earth Sci., 2001, vol. 19, pp. 265–296.

    Article  Google Scholar 

  7. Cathelineau, M. and Nieva, D., A chlorite solid solution geothermometer – the Los Azufres (Mexico) geothermal system, Contrib. Mineral. Petrol., 1985, vol. 91, pp. 235–244.

    Article  Google Scholar 

  8. Cinélu, S. and Cuney, M., Sodic metasomatism and U–Zr mineralization: a model based on the Kurupung batholith (Guyana), Geochim. Cosmochim. Acta, 2006, vol. 70 (Suppl. 1): A103 (abstract). https://doi.org/10.1016/j.gca.2006.06.120

  9. Donskaya, T.V., Bibikova, E.V., Mazukabzov, A.M., Kozakov, I.K., Gladkochub, D.P., Kirnozova, T.I., Plotkina, Yu.V., and Reznitskii, L.Z., The Primorsky granitoid complex of Western Cisbaikalia: geochronology and geodynamic typification, Russ. Geol. Geophys., 2003, vol. 44, no. 10, pp. 968–979.

    Google Scholar 

  10. Faure, G., Principles of Isotope Geology (John Wileys, New York, 1986).

    Google Scholar 

  11. Gidrotermal’nye mestorozhdeniya urana (Hydrothermal Uranium Deposits). Vol’fson, F.I., Eds., Moscow: Nedra, 1978.

  12. Gladkochub, D.P., Pisarevsky, S.A., Donskaya, T.V., Ernst, R.E., Wingate, M.T.D., Soderlund, U., Mazukabzov, A.M., Sklyarov, E.V., Hamilton, M.A., and Hanes, J.A., Proterozoic mafic magmatism in Siberian Craton: an overview and implications for paleocontinental reconstruction, Precambrian Res., 2010, vol. 183, pp. 660–668. https://doi.org/10.1016/j.precamres.2010.02.023

    Article  Google Scholar 

  13. Golubev, V.N., Makar’ev, N.B., and Bylinskaya, L.V., Deposition and remobilization of uranium in the North Baikal Region: evidence from the U–Pb isotopic systems of uranium ores, Geol. Ore Deposits, 2008, vol. 50, no. 6, pp. 482–490

    Article  Google Scholar 

  14. Hawthorne, F.C., Oberti, R., Harlow, G.E., Maresch, W.V., Martin, R.F., Schumacher, J.C., and Welch, M.D., Nomenclature of the amphibole supergroup, Am. Mineral., 2012, vol. 97, pp. 2031–2048.

    Article  Google Scholar 

  15. Hey, M.H., A new rewier of the chlorites, Mineral. Mag., 1954, vol. 30, pp. 277–292.

    Google Scholar 

  16. Jacobsen, S.B. and Wasserburg, G.J., Sm–Nd evolution of chondrites and achondrites, Earth Planet, Sci. Lett., 1984, vol. 67, pp. 137–150.

    Article  Google Scholar 

  17. Kalinina, D.V., Deniskina, N.D., and Lokhova, G.G., Amfibolovye asbesty, ikh sintez i genezis v prirode (Amphibole Asbestos, its Synthesis, and Genesis in Nature), Novosibirsk: Nauka, 1975.

  18. Kazanskii, V.I., Omel’yanenko, B.I., and Prokhorov, K.V., Ore-bearing alkaline metasomatites in large faults of the crystalline basement, Endogennoe orudenenie drevnikh shchitov (Endogenous Mineralization of Ancient Shields), Moscow: Nauka, 1978, pp. 102–144.

    Google Scholar 

  19. Kennicott, J., Chi, G., and Ashton, K., Field and petrographic study of albitization associated with uranium mineralization in the Beaverlodge uranium district of northern Saskatchewan, Summary of Investigations. Volume 2. Saskatchewan Geological Survey, Sask. Ministry of Econ. Misc. Rep., 2015, Misc. Rep. 2015–4.2., Pap. A-4.

  20. Kheraskova, T.N., Bush, V.A., Didenko, A.N., and Samygin, S.G., Breakup of Rodinia and early stages of evolution of the Paleoasian Ocean, Geotectonics, 2010, vol. 44, no. 1, pp. 3–24.

    Article  Google Scholar 

  21. Kol’tsov, A.B., Conditions of formation of micas and chlorites of variable composition in metasomatic processes, Geokhimiya, 1992, no. 6, pp. 846–856.

  22. Larin, A.M., Sal’nikova, E.B., Kotov, A.B., Kovalenko, V.I., Rytsk, E.Yu., Yakovleva, S.Z., Berezhnaya, N.G., Kovach, V.P., Buldygerov, V.V., and Sryvtsev, N.A, The North Baikal volcanoplutonic belt: age, formation duration, and tectonic setting, Dokl. Earth Sci., 2003, vol. 392, no. 1, pp. 963–967.

    Google Scholar 

  23. Leake, B.E., Woolley, A.R., and Arps, C.E.S., et al. Nomenclature of amphiboles: a report of Subcommittee on Amphibole, Commision on New Minerals and Mineral Names of the International Mineralogical Association (CNMMN IMA), Zap. Ross. Mineral. O-va, 1997, no. 6, pp. 82–97.

  24. Lefebvre, N., Kopylova, M., and Kivi, K., Archean calc–alkaline lamprophyres of Wawa, Ontario, Canada: unconventional diamondiferous volcaniclastic rocks, Precambrian Res., 2005, vol. 138, p. 57–87.

    Article  Google Scholar 

  25. Makrygina, V.A. and Antipin, V.S., Geokhimiya i petrologiya metamorficheskikh i magmaticheskikh porod Ol’khonskogo regiona Pribaikal’ya (Geochemistry and Petrology of Metamorphic and Magmatic Rocks of the Olkhon Region, Baikal Area), Novosibirsk: Akademicheskoe izd-vo “Geo”, 2018.

  26. Mashkovtsev, G.A., Konstantinov, A.K., Miguta, A.K., Shumilin, M.V., and Shchetochkin, V.N. Uran rossiiskikh nedr (Uranium of Russian Interior), Moscow: VIMS, 2010.

  27. Naumov, G.B., Osnovy fiziko–khimicheskoi modeli uranovogo rudoobrazovaniya (Principles of Physicochemical Model of the Uranium Ore Formation), Moscow: Atomizdat, 1978.

  28. Naumov, G.B., Uranium migration in hydrothermal solutions, Geol. Ore Deposits, 1998, vol. 40, no. 4, pp. 273–289.

    Google Scholar 

  29. Newton, R.C. and Manning, C.E., Role of saline fluids in the deep-crustal and upper-mantle metasomatism: insights from experimental studies, Geofluids, 2010, vol. 10, pp. 58–72. https://doi.org/10.1111/j.1468-8123.2009.00275.x

    Google Scholar 

  30. Ohmoto, H., Isotopes of Sulfur and Carbon, Geochemistry of Hydrothermal Ore Deposits, Barnes, H.L., Eds., New York: Wiley, 1979, pp. 509–567.

    Google Scholar 

  31. Orville, P.M., Alkali ion exchange between vapor and feldspar phases, Am. J. Sci., 1963, vol. 261, no. 3, pp. 201–237. https://doi.org/10.2475/ajs.261.3.201

    Article  Google Scholar 

  32. Panteeva, S.V., Gladkochoub, D.P., Donskaya, T.V., Markova, V.V., and Sandimirova, G.P., Determination of 24 trace elements in felsic rocks by inductively coupled plasma mass spectrometry after lithium metaborate fusion, Spectrochim. Acta, Part B: Atomic Spectroscopy, 2003, vol. 58, no. 2, pp. 341–350.

    Article  Google Scholar 

  33. Pin, C. and Zalduegui, J.F.S., Sequential separation of light rare-earth elements, thorium and uranium by miniaturized extraction chromatography: application to isotopic analyses of silicate rocks, Anal. Chim. Acta, 1997, vol. 339, pp. 79–89.

    Article  Google Scholar 

  34. Polito, P.A., Kyser, T.K., and Stanley, C., The Proterozoic, albitite-hosted, Valhalla uranium deposit, Queensland, Australia: a description of the alteration assemblage associated with uranium mineralization in diamond drill hole, Miner. Deposita, 2009, vol. 44, pp. 11–40. https://doi.org/10.1007/s00126-007-0162-2

    Article  Google Scholar 

  35. Robinson, B.W., Carbon and oxygen isotopic equilibria in hydrothermal calcites, Geochem. J., 1975, vol. 9, p. 43–46.

    Article  Google Scholar 

  36. Rudnick, R.L. and Gao, S., Composition of the continental crust, Treatise Geochem., 2003, vol. 3, p. 1–64.

    Google Scholar 

  37. Samgin–Dolzhanskii, I.S., Structural–Morphological Types of Uranium-Bearing Zones and Accompanying Wall-Rock Metasomatites of the Akitkan Potential Uranium District (Northern Baikal Area), Extended Abstract of Candidate (Geol.-Min.) Dissertation, Moscow: MGRI–RGGRU, 2012.

  38. Savel’eva, V.B. and Bazarova, E.P., The Early Proterozoic Primorskii Complex of rapakivi granites (western Cisbaikalia): geochemistry, crystallization conditions, and ore potential, Russ. Geol. Geophys., 2012, vol. 53, no. 2, pp. 147–168.

    Article  Google Scholar 

  39. Shmuraeva, L.Ya., Prirazlomnye kabonatno–shchelochnye metasomatity dokembriya, ikh rudonosnost’ i genesis (Precambrian Fault-Related Carbonate–Alkaline Metasomatites, their Ore Potential, and Genesis), Vladivostok: Dal’nauka, 1995.

  40. Tsaruk, I.I., Anikeev, V.N., and Tsaruk, I.V., Structural control and mineralogical features of uranium mineralization at the Bezymyannoe deposit, Mater. Geol. Mestorozhd. Urana, Redkikh Redkozem. Met. (Proc. Geol. Uranium, Rare, and Rare-Earth Deposits), Vyp. 154. M.: VIMS, 2009, vol. 154, pp. 105–118.

    Google Scholar 

  41. Tugarinov, A.I., Naumov, V.B., and Jahn, N., Experimental reproducibility of alkaline–carbonate metasomatism, Geokhimiya, 1963, no. 6, pp. 570–579.

  42. Turekian, K. and Wedepohl, K., Distribution of the elements in some major units of the Earth’s crust, Geol, Soc. Am. Bull., 1961, vol. 72, no. 2, pp. 175–191.

    Article  Google Scholar 

  43. Vladimirov, A.G., Volkova, N.I. Mekhanoshin, A.S., Travin, A.V., Vladimirov, V.G., Khromykh, S.V., Yudin, D.S., and Kolotilina, T.B., The geodynamic model of formation of early Caledonides in the Olkhon Region (West Pribaikalie), Dokl. Earth Sci., 2011, vol. 436, no. 2, pp. 203–209.

    Article  Google Scholar 

  44. Wan, B., Li, S., Xiao, W., and Windley, B.F., Where and when did the Paleo-Asian ocean form, Precambrian Res., 2018, vol. 317, pp. 241–252. https://doi.org/10.1016/j.precambres.2018.09.003

    Article  Google Scholar 

  45. Wilde, A., Towards a model for albitite-type uranium, Minerals, 2013, vol. 3, p. 36–48. https://doi.org/10.3390/min3010036

    Article  Google Scholar 

  46. Wilde, A., Otto, A., Jory, J., Macrae, C., Pownceby, M., Wilson, N., and Torpy, A., Geology and mineralogy of uranium deposits from Mount Isa, Australia: implications for albitite uranium deposit models, Minerals, 2013, vol. 3, p. 258–283. https://doi.org/10.3390/min3030258

    Article  Google Scholar 

  47. Winkler, G., Petrogenesis of Metamorphic Rocks (Springer-Verlag, New York, 1979).

    Book  Google Scholar 

  48. Zang, W. and Fyfe, W.S., Chloritization of the hydrothermally altered bedrock at the Igarape Bahia gold deposit, Carajas, Brazil, Miner. Deposita, 1995, vol. 30, p. 30.

    Article  Google Scholar 

  49. Zaraiskii, G.P., Ryadchikova, E.V., and Shapovalov, Yu.B., Experimental modeling of sodium metasomatism of granodiorite, Ocherki Fiz.-Khim. Petrol. (A Review of Physicochemical Petrology), Moscow: Nauka, 1984, vol. 12, pp. 84–118.

    Google Scholar 

  50. Zheng, Y.-F., Oxygen isotope fractionation in carbonate and sulfate minerals, Geochem. J., 1999, vol. 33, p. 109.

    Article  Google Scholar 

  51. Zorin, Yu.A., Sklyarov, E.V., Belichenko, V.G., and Mazukabzov, A.M., Island-arc–back arch basin evolution: implications for Late Riphean–Early Paleozoic geodynamic history of the Sayan–Baikal folded area, Russ. Geol. Geophys., 2009, vol. 50, no. 3, pp. 149–161.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to express their sincere gratitude to the anonymous reviewers for carefully reading the original text of the manuscript and for constructive comments that significantly improved the quality of the article.

Funding

The study was financially supported by the Russian Foundation for Basic Research (project no. 17-05-00819) and the integration project of the IRC SB RAS, block 1.4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Savelyeva.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savelyeva, V.B., Bazarova, E.P., Demonterova, E.I. et al. Carbonate–Alkaline Metasomatites of the Peschanoe Uranium Occur (Western Baikal Region): Mineral-Geochemical and Isotope-Geochemical Characteristics. Geol. Ore Deposits 63, 54–78 (2021). https://doi.org/10.1134/S1075701520060069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701520060069

Keywords:

Navigation