Skip to main content
Log in

Nonsymbolic and symbolic representations of null numerosity

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

Previous research has shown that null numerosity can be processed as a numerical entity that is represented together with non-null numerosities on the same magnitude system. The present study examined which conditions enable perceiving nonsymbolic (i.e., an empty set) and symbolic (i.e., 0) representations of null numerosity as a numerical entity, using distance and end effects. In Experiment 1, participants performed magnitude comparisons of notation homogeneous pairs (both numerosities appeared in nonsymbolic or symbolic format), as well as heterogeneous pairs (a nonsymbolic numerosity versus a symbolic one). Comparisons to 0 resulted in faster responses and an attenuated distance effect in all conditions, whereas comparisons to an empty set produced such effects only in the nonsymbolic and symbolic homogeneous conditions. In Experiments 2 and 3, participants performed same/different numerosity judgments with heterogeneous pairs. A distance effect emerged for "different" judgments of 0 and sets of 1 to 9 dots, but not for those with an empty set versus digits 1–9. These findings indicate that perceiving an empty set, but not 0, as a numerical entity is determined by notation homogeneity and task requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Furthermore, visual inspection of the data in the symbolic block (see Figure 2, left panel) suggests that the distance effect found for comparisons to empty sets may stem from a significant linear decrease primarily explained by the RT difference between an intrapair distance of 1 and all other intrapair distances, instead of reflecting a gradual linear decrease with the increase in the intrapair distance. An intrapair distance of 1 in comparisons to null numerosity corresponds to a comparison between two semantic end-values, that is, 0 and 1. Such a comparison may be conflicting, thus resulting in longer RTs (Pinhas et al., 2015; Pinhas & Tzelgov, 2012). To examine this impression statistically, we reanalyzed both comparisons to null numerosity and other comparisons in each of the homogeneous blocks excluding an intrapair distance of 1. In each of these four conditions, we examined the significance of the linear trend to evaluate the presence of a distance effect. Comparisons to null numerosity resulted in significant linear trends in both the symbolic block, F(1, 23) = 12.48, MSE = 88.21, p = .004, η2p = .27, and nonsymbolic block, F(1, 23) = 71.12, MSE = 61.88, p < .001, η2p = .82. Similarly, significant linear trends were obtained for other comparisons in the symbolic block, F(1, 23) = 8.17, MSE = 206, p < .001, η2p = .09) and nonsymbolic block, F(1, 23) = 54.46, MSE = 371, p < .001, η2p = .48.

  2. The error rate analyses in the same/different tasks of both Experiments 2 and 3 indicated an increase in the error rates as a function of an increase in the presented numerosity for “same” responses. These findings reflect the inaccuracy of the estimation process in larger quantities. “Different” responses rarely resulted in errors and, thus, their analyses did not result in significant effects. Accordingly, the error rate analyses revealed no speed-accuracy trade-offs or significant effects. Therefore, for the sake of brevity, they were not reported.

References

  • Bächtold, D., Baumüller, M., & Brugger, P. (1998). Stimulus-response compatibility in representational space. Neuropsychologia, 36(8), 731–735.

    PubMed  Google Scholar 

  • Banks, W. P. (1977). Encoding and processing of symbolic information in comparative judgments. The Psychology of Learning and Motivation, 11, 101–159.

    Google Scholar 

  • Beran, M. J., Perdue, B. M., & Evans, T. A. (2015). Monkey mathematical abilities. The Oxford Handbook of Numerical Cognition (pp. 237–257). Oxford, UK: University Press.

  • Bialystok, E., & Codd, J. (2000). Representing quantity beyond whole numbers: Some, none, and part. Canadian Journal of Experimental Psychology/Revue Canadienne De Psychologie Expérimentale, 54, 117–128.

    PubMed  Google Scholar 

  • Biro, D., & Matsuzawa, T. (2001). Use of numerical symbols by the chimpanzee (Pan troglodytes): Cardinals, ordinals, and the introduction of zero. Animal Cognition, 4, 193–199.

    PubMed  Google Scholar 

  • Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108, 624–652.

    PubMed  Google Scholar 

  • Brysbaert, M. (1995). Arabic number reading: On the nature of the numerical scale and the origin of phonological recoding. Journal of Experimental Psychology: General, 124, 434–452.

    Google Scholar 

  • Butterworth, B., Zorzi, M., Girelli, L., & Jonckheere, A. (2001). Storage and retrieval of addition facts: The role of number comparison. The Quarterly Journal of Experimental Psychology: Section A, 54, 1005–1029.

    Google Scholar 

  • Campbell, J. I. (1994). Architectures for numerical cognition. Cognition, 53(1), 1–44.

    PubMed  Google Scholar 

  • Campbell, J. I. D., & Metcalfe, A. W. S. (2007). Numeral format and arithmetic rules. European Journal of Cognitive Psychology, 19, 335–355.

    Google Scholar 

  • Clearfield, M. W., & Mix, K. S. (1999). Number versus contour length in infants’ discrimination of small visual sets. Psychological Science, 10, 408–411.

    Google Scholar 

  • Clearfield, M. W., & Mix, K. S. (2001). Amount versus number: Infants’ use of area and contour length to discriminate small sets. Journal of Cognition and Development, 2, 243–260.

    Google Scholar 

  • Cohen, D. J. (2009). Integers do not automatically activate their quantity representation. Psychonomic Bulletin & Review, 16, 332–336.

    Google Scholar 

  • Cohen, J. D., Dunbar, K., & McClelland, J. L. (1990). On the control of automatic processes: A parallel distributed processing account of the Stroop effect. Psychological Review, 97, 332–361.

    PubMed  Google Scholar 

  • Cohen Kadosh, R., Brodsky, W., Levin, M., & Henik, A. (2008). Mental representation: What can pitch tell us about the distance effect? Cortex, 44, 470–477.

    PubMed  Google Scholar 

  • Cohen Kadosh, R., & Walsh, V. (2009). Numerical representation in the parietal lobes: Abstract or not abstract? Behavioral and Brain Sciences, 32, 313–328.

    PubMed  Google Scholar 

  • Cooper Jr, R. G. (1984). Early number development. In Origins of cognitive skills: The eighteenth annual Carnegie symposium on cognition (pp. 157–192). Erlbaum.‏

  • Defever, E., Sasanguie, D., Vandewaetere, M., & Reynvoet, B. (2012). What can the same–different task tell us about the development of magnitude representations? Acta Psychologica, 140, 35–42.

    PubMed  Google Scholar 

  • Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 44, 1–42.

    PubMed  Google Scholar 

  • Dehaene, S. (2003). The neural basis of the Weber-Fechner law: A logarithmic mental number line. Trends in Cognitive Sciences, 7, 145–147.

    PubMed  Google Scholar 

  • Dehaene, S., & Akhavein, R. (1995). Attention, automaticity, and levels of representation in number processing. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21, 314–326.

    PubMed  Google Scholar 

  • Dehaene, S., & Changeux, J. (1993). Development of elementary numerical abilities: A neuronal model. Journal of Cognitive Neuroscience, 5, 390–407.

    PubMed  Google Scholar 

  • Dehaene, S., & Cohen, L. (1995). Towards an anatomical and functional model of number processing. Mathematical Cognition, 1, 83–120.

    Google Scholar 

  • Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20, 487–506.

    PubMed  Google Scholar 

  • Entel, O., Tzelgov, J., Bereby-Meyer, Y., & Shahar, N. (2015). Exploring relations between task conflict and informational conflict in the Stroop task. Psychological Research Psychologische Forschung, 79, 913–927.

    PubMed  Google Scholar 

  • Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in Cognitive Sciences, 8, 307–314.

    PubMed  Google Scholar 

  • Fias, W. (2001). Two routes for the processing of verbal numbers: Evidence from the SNARC effect. Psychological Research Psychologische Forschung, 65, 250–259.

    PubMed  Google Scholar 

  • Fias, W., Lammertyn, J., Caessens, B., & Orban, G. A. (2007). Processing of abstract ordinal knowledge in the horizontal segment of the intraparietal sulcus. Journal of Neuroscience, 27, 8952–8956.

    PubMed  Google Scholar 

  • Fischer, M. H., Mills, R. A., & Shaki, S. (2010). How to cook a SNARC: Number placement in text rapidly changes spatial-numerical associations. Brain and Cognition, 72(3), 333–336.

    PubMed  Google Scholar 

  • Fischer, M. H., Shaki, S., & Cruise, A. (2009). It takes just one word to quash a SNARC. Experimental Psychology, 56(5), 361–366.

    PubMed  Google Scholar 

  • Gallistel, C. R., & Gelman, R. (1992). Preverbal and verbal counting and computation. Cognition, 44, 43–74.

    PubMed  Google Scholar 

  • Gallistel, C. R., & Gelman, R. (2000). Non-verbal numerical cognition: From reals to integers. Trends in Cognitive Sciences, 4, 59–65.

    PubMed  Google Scholar 

  • Gebuis, T., & Reynvoet, B. (2011). Generating nonsymbolic number stimuli. Behavior Research Methods, 43, 981–986.

    PubMed  Google Scholar 

  • Gebuis, T., & Reynvoet, B. (2012). The interplay between nonsymbolic number and its continuous visual properties. Journal of Experimental Psychology: General, 141, 642648-.

  • Godwin, H. J., Hout, M. C., & Menneer, T. (2014). Visual similarity is stronger than semantic similarity in guiding visual search for numbers. Psychonomic Bulletin & Review, 21, 689–695.

    Google Scholar 

  • Groen, G. J., & Parkman, J. M. (1972). A chronometric analysis of simple addition. Psychological Review, 79(4), 329–343.

    Google Scholar 

  • Howard, S. R., Avarguès-Weber, A., Garcia, J. E., Greentree, A. D., & Dyer, A. G. (2018). Numerical ordering of zero in honey bees. Science, 360, 1124–1126.

    PubMed  Google Scholar 

  • Jeffreys, H. (1961). Theory of probability . Oxford University Press.

    Google Scholar 

  • Kaufmann, L., Vogel, S. E., Starke, M., Kremser, C., & Schocke, M. (2009). Numerical and non-numerical ordinality processing in children with and without developmental dyscalculia: Evidence from fMRI. Cognitive Development, 24, 486–494.

    Google Scholar 

  • Keppel, G. (1991). Design and analysis: A researcher's handbook Prentice-Hall, Inc.

  • Leibovich, T., & Ansari, D. (2017). Accumulation of non-numerical evidence during nonsymbolic number processing in the brain: An fmri study. Human Brain Mapping, 38, 4908–4921.

    PubMed  PubMed Central  Google Scholar 

  • Leibovich, T., Katzin, N., Harel, M., & Henik, A. (2017). From “sense of number” to “sense of magnitude”: The role of continuous magnitudes in numerical cognition. Behavioral and Brain Sciences, 40, e164.

    PubMed  Google Scholar 

  • Leth-Steensen, C., & Marley, A. (2000). A model of response time effects in symbolic comparison. Psychological Review, 107, 62–100.

    PubMed  Google Scholar 

  • Levin, Y., & Tzelgov, J. (2016). What Klein’s “semantic gradient” does and does not really show: Decomposing Stroop interference into task and informational conflict components. Frontiers in Psychology, 7, 249.

    PubMed  PubMed Central  Google Scholar 

  • Liszkowski, U., Schäfer, M., Carpenter, M., & Tomasello, M. (2009). Prelinguistic infants, but not chimpanzees, communicate about absent entities. Psychological Science, 20, 654–660.

    PubMed  Google Scholar 

  • Maxwell, S. E., Delaney, H. D., & Kelley, K. (2017). Designing experiments and analyzing data: A model comparison perspective (3rd ed.). Routledge.

    Google Scholar 

  • Meck, W. H., & Church, R. M. (1983). A mode control model of counting and timing processes. Journal of Experimental Psychology: Animal Behavior Processes, 9, 320–334.

    PubMed  Google Scholar 

  • Merritt, D. J., & Brannon, E. M. (2013). Nothing to it: Precursors to a zero concept in preschoolers. Behavioural Processes, 93, 91–97.

    PubMed  Google Scholar 

  • Merritt, D. J., Rugani, R., & Brannon, E. M. (2009). Empty sets as part of the numerical continuum: Conceptual precursors to the zero concept in rhesus monkeys. Journal of Experimental Psychology: General, 138, 258–269.

    Google Scholar 

  • Moyer, R. S., & Landauer, T. K. (1967). Time required for judgements of numerical inequality. Nature, 215, 1519–1520.

    PubMed  Google Scholar 

  • Nieder, A. (2018). Honey bees zero in on the empty set. Science, 360, 1069–1070.

    PubMed  Google Scholar 

  • Notebaert, W., Gevers, W., Verguts, T., & Fias, W. (2006). Shared spatial representations for numbers and space: The reversal of the SNARC and the Simon effects. Journal of Experimental Psychology: Human Perception and Performance, 32(5), 1197.

    PubMed  Google Scholar 

  • Nuerk, H., Iversen, W., & Willmes, K. (2004). Notational modulation of the SNARC and the MARC (linguistic markedness of response codes) effect. Quarterly Journal of Experimental Psychology Section A, 57, 835–863.

    Google Scholar 

  • Okuyama, S., Kuki, T., & Mushiake, H. (2015). Representation of the numerosity ‘zero’ in the parietal cortex of the monkey. Scientific Reports, 5, 10059.

    PubMed  PubMed Central  Google Scholar 

  • Pepperberg, I. M. (2006). Grey parrot numerical competence: A review. Animal Cognition, 9, 377–391.

    PubMed  Google Scholar 

  • Pepperberg, I. M., & Gordon, J. D. (2005). Number comprehension by a grey parrot (Psittacus erithacus), including a zero-like concept. Journal of Comparative Psychology, 119, 197–209.

    PubMed  Google Scholar 

  • Pinhas, M., Buchman, C., Lavro, D., Mesika, D., Tzelgov, J., & Berger, A. (2015). The neural signatures of processing semantic end values in automatic number comparisons. Frontiers in Human Neuroscience, 9, 645.

    PubMed  PubMed Central  Google Scholar 

  • Pinhas, M., Pothos, E. M., & Tzelgov, J. (2013). Zooming in and out from the mental number line: Evidence for a number range effect. Journal of Experimental Psychology: Learning, Memory, and Cognition, 39(3), 972.

    PubMed  Google Scholar 

  • Pinhas, M., & Tzelgov, J. (2012). Expanding on the mental number line: Zero is perceived as the “smallest.” Journal of Experimental Psychology: Learning, Memory, and Cognition, 38(5), 1187–1205.

    PubMed  Google Scholar 

  • Pinhas, M., Tzelgov, J., & Ganor-Stern, D. (2012). Estimating linear effects in ANOVA designs: The easy way. Behavior Research Methods, 44(3), 788–794.

    PubMed  Google Scholar 

  • Pinhas, M., Tzelgov, J., & Guata-Yaakobi, I. (2010). Exploring the mental number line via the size congruity effect. Canadian Journal of Experimental Psychology, 64(3), 221–225.

    PubMed  Google Scholar 

  • Ramirez-Cardenas, A., Moskaleva, M., & Nieder, A. (2016). Neuronal representation of numerosity zero in the primate parieto-frontal number network. Current Biology, 26, 1285–1294.

    PubMed  Google Scholar 

  • Ratinckx, E., Brysbaert, M., & Fias, W. (2005). Naming two-digit Arabic numerals: Evidence from masked priming studies. Journal of Experimental Psychology: Human Perception and Performance, 31(5), 1150.

    PubMed  Google Scholar 

  • Robson, D. S. (1959). A simple method for constructing orthogonal polynomials when the independent variable is unequally spaced. Biometrics, 15, 187–191.

    Google Scholar 

  • Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009). Bayesian t tests for accepting and rejecting the null hypothesis. Psychonomic bulletin & review, 16(2), 225–237.

    Google Scholar 

  • Schneider, W., Eschman, A., & Zuccolotto, A. (2002). E-Prime: User's guide. Psychology Software Incorporated.‏

  • Semenza, C., Grana, A., & Girelli, L. (2006). On knowing about nothing: The processing of zero in single-and multi-digit multiplication. Aphasiology, 20, 1105–1111.

    Google Scholar 

  • Shaki, S., & Fischer, M. H. (2008). Reading space into numbers–a cross-linguistic comparison of the SNARC effect. Cognition, 108(2), 590–599.

    PubMed  Google Scholar 

  • Tzelgov, J., & Ganor-Stern, D. (2005). Automaticity in processing ordinal information. In J. I. D. Campbell (Ed.), Handbook of mathematical cognition (pp. 55–67). Psychology Press.

    Google Scholar 

  • Van Opstal, F., Gevers, W., De Moor, W., & Verguts, T. (2008). Dissecting the symbolic distance effect: Comparison and priming effects in numerical and nonnumerical orders. Psychonomic Bulletin & Review, 15, 419–425.

    Google Scholar 

  • Van Opstal, F., & Verguts, T. (2011). The origins of the numerical distance effect: The same–different task. Journal of Cognitive Psychology, 23, 112–120.

    Google Scholar 

  • Van Opstal, F., & Verguts, T. (2013). Is there a generalized magnitude system in the brain? Behavioral, neuroimaging, and computational evidence. Frontiers in Psychology, 4, 435.

    PubMed  PubMed Central  Google Scholar 

  • Varma, S., & Schwartz, D. L. (2011). The mental representation of integers: An abstract-to-concrete shift in the understanding of mathematical concepts. Cognition, 121, 363–385.

    PubMed  Google Scholar 

  • Verguts, T., & Fias, W. (2004). Representation of number in animals and humans: A neural model. Journal of Cognitive Neuroscience, 16, 1493–1504.

    PubMed  Google Scholar 

  • Verguts, T., & Fias, W. (2008). Symbolic and nonsymbolic pathways of number processing. Philosophical Psychology, 21, 539–554.

    Google Scholar 

  • Verguts, T., Fias, W., & Stevens, M. (2005). A model of exact small-number representation. Psychonomic Bulletin & Review, 12, 66–80.

    Google Scholar 

  • Wellman, H. M., & Miller, K. F. (1986). Thinking about nothing: Development of concepts of zero. British Journal of Developmental Psychology, 4, 31–42.

    Google Scholar 

  • Wynn, K., & Chiang, W. (1998). Limits to infants’ knowledge of objects: The case of magical appearance. Psychological Science, 9, 448–455.

    Google Scholar 

  • Xu, F., & Spelke, E. S. (2000). Large number discrimination in 6-month-old infants. Cognition, 74, B1–B11.

    PubMed  Google Scholar 

  • Zaks-Ohayon, R., Pinhas, M., & Tzelgov, J. (2021). On the indicators for perceiving empty sets as zero. Acta Psychologica, 213, 103237. https://doi.org/10.1016/j.actpsy.2020.103237.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was carried out by the first author under the supervision of the second and third authors in partial fulfillment of the PhD requirements at Ben-Gurion University of the Negev. This research was supported by the Israel Science Foundation Grant no. 1799/12 awarded to the Center for the Study of the Neurocognitive Basis of Numerical Cognition, and Grant no. 1348/18 awarded to MP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rut Zaks-Ohayon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaks-Ohayon, R., Pinhas, M. & Tzelgov, J. Nonsymbolic and symbolic representations of null numerosity. Psychological Research 86, 386–403 (2022). https://doi.org/10.1007/s00426-021-01515-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-021-01515-4

Navigation