Skip to main content
Log in

Comparison between the Eulerian (CFD) and the Lagrangian (DEM) approaches in the simulation of a flighted rotary drum

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

The particle dynamics in a flighted rotary drum operated with different numbers of flights and under different operating conditions was simulated by using both the Eulerian (computational fluid dynamics, CFD) and the Lagrangian (discrete element method, DEM) approaches. The simulated solid holdups in the flights as a function of the flights’ tip angular position were compared with experimental data. A systematic analysis of the computational demands of each approach was performed, as well as the impact of reducing the particle shear modulus in DEM simulations. Furthermore, the influence of the turbulence phenomenon on the particle behavior predicted by CFD simulations was also assessed. The choice of an appropriate numerical approach proved to be of great importance in the accuracy of particle dynamics prediction in a flighted rotary drum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhang L, Weigler F, Idakiev V, Jiang Z, Mörl L, Mellmann J, Tsotsas E (2018) Experimental study of the particle motion in flighted rotating drums by means of magnetic particle tracking. Powder Technol 339:817–826. https://doi.org/10.1016/j.powtec.2018.08.057

    Article  Google Scholar 

  2. Nascimento SM, Duarte CR, Barrozo MAS (2018) Analysis of the design loading in a flighted rotating drum using high rotational speeds. Dry Technol 36:1200–1208. https://doi.org/10.1080/07373937.2017.1392972

    Article  Google Scholar 

  3. Sheehan ME, Britton PF, Schneider PA (2005) A model for solids transport in flighted rotary dryers based on physical considerations. Chem Eng Sci 60:4171–4182. https://doi.org/10.1016/j.ces.2005.02.055

    Article  Google Scholar 

  4. Lee A, Sheehan ME (2010) Development of a geometric flight unloading model for flighted rotary dryers. Powder Technol 198:395–403. https://doi.org/10.1016/j.powtec.2009.12.004

    Article  Google Scholar 

  5. Karali MA, Specht E, Herz F, Mellmann J, Refaey HA (2018) Unloading characteristics of flights in a flighted rotary drum operated at optimum loading. Powder Technol 333:347–352. https://doi.org/10.1016/j.powtec.2018.04.052

    Article  Google Scholar 

  6. Revol D, Briens CL, Chabagno JM (2001) The design of flights in rotary dryers. Powder Technol 121(2–3):230–238. https://doi.org/10.1016/S0032-5910(01)00362-X

    Article  Google Scholar 

  7. Sunkara KR, Herz F, Specht E, Mellmann J (2013) Influence of flight design on the particle distribution of a flighted rotating drum. Chem Eng Sci 90:101–109. https://doi.org/10.1016/j.ces.2012.12.035

    Article  Google Scholar 

  8. Sherritt RG, Caple R, Behie LA, Mehrotra AK (1993) The movement of solids through flighted rotating drums. Part I: model formulation. Can J Chem Eng 71:337–346. https://doi.org/10.1002/cjce.5450710302

    Article  Google Scholar 

  9. Glikin PG (1978) Transport of solids through flighted rotating drum. Trans Inst Chem Eng 56:120–126

    Google Scholar 

  10. Lisboa MH, Vitorino DS, Delaiba WB, Finzer JRD, Barrozo MAS (2007) A study of particle motion in rotary dryer. Braz J Chem Eng 24:365–374. https://doi.org/10.1590/S0104-66322007000300006

    Article  Google Scholar 

  11. Fernandes NJ, Ataíde CH, Barrozo MAS (2009) Modeling and experimental study of hydrodynamic and drying characteristics of an industrial. Braz J Chem Eng 26:331–341. https://doi.org/10.1590/S0104-66322009000200010

    Article  Google Scholar 

  12. Blumberg W, Schulunder EU (1996) Transversale schuttgutbewegung und konvektiver stoffubergang in drehrohren. teil 2: mit hubschaufeln. Chem Eng Process 35:405–411. https://doi.org/10.1016/S0255-2701(96)04151-7

    Article  Google Scholar 

  13. Rong W, Feng Y, Schwarz P, Witt P, Li B, Song T, Zhou J (2020) Numerical study of the solid flow behavior in a rotating drum based on a multiphase CFD model accounting for solid frictional viscosity and wall friction. Powder Technol 361:87–98. https://doi.org/10.1016/j.powtec.2019.10.034

    Article  Google Scholar 

  14. Lun CKK, Savage SB, Jeffrey DJ, Chepurniy N (1984) Kinetic theories for granular flow: inelastic particles in couette flow and slightly inelastic particles in a general flowfield. J Fluid Mech 140:223–256. https://doi.org/10.1017/S0022112084000586

    Article  MATH  Google Scholar 

  15. Rong W, Li B, Feng Y, Schwarz P, Witt P, Qi F (2020) Numerical analysis of size-induced particle segregation in rotating drums based on Eulerian continuum approach. Powder Technol 376:80–92. https://doi.org/10.1016/j.powtec.2020.07.101

    Article  Google Scholar 

  16. Nascimento SM, Santos DA, Barrozo MAS, Duarte CR (2015) Solids holdup in flighted rotating drums: an experimental and simulation study. Powder Technol 280:18–25. https://doi.org/10.1016/j.powtec.2015.04.038

    Article  Google Scholar 

  17. Machado MVC, Nascimento SM, Duarte CR, Barrozo MAS (2017) Boundary conditions effects on the particle dynamic flow in a rotary drum with a single flight. Powder Technol 311:341–349. https://doi.org/10.1016/j.powtec.2017.01.076

    Article  Google Scholar 

  18. Benedito WM, Duarte CR, Barrozo MAS, Santos DA (2018) An investigation of CFD simulations capability in treating non-spherical particle dynamics in a rotary drum. Powder Technol 332:171–177. https://doi.org/10.1016/j.powtec.2018.03.067

    Article  Google Scholar 

  19. Huang AN, Kuo HP (2017) CFD simulation of particle segregation in a rotating drum. Part I: eulerian solid phase kinetic viscosity. Adv Powder Technol 28:2094–2101. https://doi.org/10.1016/j.apt.2017.05.016

    Article  Google Scholar 

  20. Huang AN, Kuo HP (2018) CFD simulation of particle segregation in a rotating drum. Part II: effects of specularity coefficient. Adv Powder Technol 29:3368–3374. https://doi.org/10.1016/j.apt.2018.09.019

    Article  Google Scholar 

  21. Santos DA, Duarte CR, Barrozo MAS (2016) Segregation phenomenon in a rotary drum: experimental study and CFD simulation. Powder Technol 294:1–10. https://doi.org/10.1016/j.powtec.2016.02.015

    Article  Google Scholar 

  22. Geng F, Yuan Z, Yan Y, Luo D, Wang H, Li B, Xu D (2009) Numerical simulation on mixing kinetics of slender particles in a rotary dryer. Powder Technol 193:50–58. https://doi.org/10.1016/j.powtec.2009.02.005

    Article  Google Scholar 

  23. Silverio BC, Santos KG, Duarte CR, Barrozo MAS (2014) Effect of the friction, elastic, and restitution coefficients on the fluid dynamics behavior of a rotary dryer operating with fertilizer. Ind Eng Chem Res 53:8920–8926. https://doi.org/10.1021/ie404220h

    Article  Google Scholar 

  24. Santos DA, Barrozo MAS, Duarte CR, Weigler F, Mellmann J (2016) Investigation of particle dynamics in a rotary drum by means of experiments and numerical simulations using DEM. Adv Powder Technol 27(2):692–703. https://doi.org/10.1016/j.apt.2016.02.027

    Article  Google Scholar 

  25. Chen H, Xiao YG, Liu YL, Shi YS (2017) Effect of young’s modulus on DEM results regarding transverse mixing of particles within a rotating drum. Powder Technol 318:507–517. https://doi.org/10.1016/j.powtec.2017.05.047

    Article  Google Scholar 

  26. Yazdani E, Hashemabadi SH (2019) The influence of cohesiveness on particulate bed segregation and mixing in rotating drum using DEM. Phys A Stat Mech Appl 525:788–797. https://doi.org/10.1016/j.physa.2019.03.127

    Article  Google Scholar 

  27. Brandao RJ, Lima RM, Santos RL, Duarte CR, Barrozo MAS (2020) Experimental study and DEM analysis of granular segregation in a rotating drum. Powder Technol 364:1–12. https://doi.org/10.1016/j.powtec.2020.01.036

    Article  Google Scholar 

  28. Zhang L, Jiang Z, Weigler F, Herz F, Mellmann J, Tsotsas E (2020) PTV measurement and DEM simulation of the particle motion in a flighted rotating drum. Powder Technol 363:23–37. https://doi.org/10.1016/j.powtec.2019.12.035

    Article  Google Scholar 

  29. Silveira JC, Brandao RJ, Lima RM, Machado MVC, Barrozo MAS, Duarte CR (2020) A fluid dynamic study of the active phase behavior in a rotary drum with flights of two and three segments. Powder Technol 368:297–307. https://doi.org/10.1016/j.powtec.2020.04.051

    Article  Google Scholar 

  30. Moliner C, Marchelli F, Spanachi N, Martinez-Felipe A, Bosio B, Arato E (2019) CFD simulation of a spouted bed: comparison between the Discrete Element Method (DEM) and the Two Fluid Model (TFM). Chem Eng J 377:120466. https://doi.org/10.1016/j.cej.2018.11.164

    Article  Google Scholar 

  31. Lommen S, Schott D, Lodewijks G (2014) DEM speedup: stiffness effects on behavior of bulk material. Particuology 12:107–112. https://doi.org/10.1016/j.partic.2013.03.006

    Article  Google Scholar 

  32. Santos DA, Petri IJ, Duarte CR, Barrozo MAS (2013) Experimental and CFD study of the hydrodynamic behavior in a rotating drum. Powder Technol 250:52–62. https://doi.org/10.1016/j.powtec.2013.10.003

    Article  Google Scholar 

  33. Launder BE, Spalding DB (1974) The numerical computation of turbulent flows. Comput Methods Appl Mech Eng 3:269–289. https://doi.org/10.1016/0045-7825(74)90029-2

    Article  MATH  Google Scholar 

  34. Yang S, Zhang L, Luo K, Chew JW (2018) DEM investigation of the axial dispersion behavior of a binary mixture in the rotating drum. Powder Technol 330:93–104. https://doi.org/10.1016/j.powtec.2018.02.021

    Article  Google Scholar 

  35. Foerster SF, Louge MY, Chang H, Allia K (1994) Measurements of the collision properties of small spheres. Phys Fluids 6:1108–1115. https://doi.org/10.1063/1.868282

    Article  Google Scholar 

  36. Box GEP, Hunter JS, Hunter WG (2005) Statistics for experimenters design, innovation, and discovery. Wiley, Hoboken, N.J

    MATH  Google Scholar 

  37. Yu Y, Saxén H (2011) Discrete element method simulation of properties of a 3D conical hopper with mono-sized spheres. Adv Powder Technol 22:324–331. https://doi.org/10.1016/j.apt.2010.04.003

    Article  Google Scholar 

  38. Marigo M, Stitt EH (2015) Discrete element method (DEM) for industrial applications: Comments on calibration and validation for the modelling of cylindrical pellets. KONA Powder Part J 32:236–252. https://doi.org/10.14356/kona.2015016

    Article  Google Scholar 

  39. Ebrahimi M, Crapper M (2017) CFD–DEM simulation of turbulence modulation in horizontal pneumatic conveying. Particuology 31:15–24. https://doi.org/10.1016/j.partic.2016.05.012

    Article  Google Scholar 

  40. Gallego E, Ayuga F, Gonza C (2011) Validation and experimental calibration of 3D discrete element models for the simulation of the discharge flow in silos. Chem Eng Sci 66:5116–5126. https://doi.org/10.1016/j.ces.2011.07.009

    Article  Google Scholar 

  41. Coetzee CJ (2017) Review: calibration of the discrete element method. Powder Technol 310:104–142. https://doi.org/10.1016/j.powtec.2017.01.015

    Article  Google Scholar 

  42. Makishima A, Mackenzie JD (1975) Calculation of bulk modulus, shear modulus and poisson’s ratio of glass. J Non-Cryst Solids 17:147–157. https://doi.org/10.1016/0022-3093(75)90047-2

    Article  Google Scholar 

Download references

Acknowledgement

The authors are grateful to the Research Support Foundation of the state of Minas Gerais (FAPEMIG), the Brazilian National Council for Scientific and Technological Development (CNPq), and the Coordination for the Improvement of Higher Education Personnel (CAPES) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suellen M. Nascimento.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nascimento, S.M., Lima, R.M., Brandão, R.J. et al. Comparison between the Eulerian (CFD) and the Lagrangian (DEM) approaches in the simulation of a flighted rotary drum. Comp. Part. Mech. 9, 251–263 (2022). https://doi.org/10.1007/s40571-021-00407-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-021-00407-z

Keywords

Navigation