Skip to main content
Log in

Effects of Micro-turbulence on the Removal of Helium Ash in Deuterium–Tritium Plasmas

  • Review Article
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

Avoiding the accumulation of helium ash in the plasma core is a critical issue for future fusion reactors such as International Thermonuclear Experimental Reactor and China Fusion Engineering Test Reactor. The effects of micro-turbulence, including ion temperature gradient (ITG), parallel velocity shear (PVS) and collisionless trapped electron mode (CTEM) turbulence, on the removal of helium ash are briefly reviewed. We study how helium ash affects ITG and PVS instabilities based on our previous theoretical works, and compare the corresponding results with CTEM instability. The parametric dependence of ash flux is illustrated by calculating the turbulent flux and the corresponding transport coefficients. It indicates that long wavelength electrostatic micro-turbulence is favorable for removing helium ash, especially when its density profile is steeper than that of electrons. The outward flux of helium ash becomes larger for the temperature of helium ash being slightly higher than that of background plasmas (\({T}_{z}>{T}_{e}={T}_{i}\)). Isotopic effects are favorable (unfavorable) for exhausting helium ash through PVS and CTEM (ITG) turbulence. In addition, the ambipolarity of turbulent transport fluxes between electrons, ions and helium ash is self-consistently verified, and its implication on the simultaneous transport of both helium ash and D–T ions is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. ITER Physics Basis 1999 (Chapter 2: Plasma confinement and transport) Nucl. Fusion 39 2175.

  2. E.J. Synakowski, R.E. Bell et al., Phys. Rev. Lett. 75, 3689 (1995)

    Article  ADS  Google Scholar 

  3. W. Horton, Rev. Mod. Phys. 71, 735 (1999)

    Article  ADS  Google Scholar 

  4. T. Fülöp, S. Braun et al., Phys. Plasmas 17, 062501 (2010)

    Article  ADS  Google Scholar 

  5. A. Mollén, I. Pusztai et al., Phys. Plasmas 20, 032310 (2013)

    Article  ADS  Google Scholar 

  6. T. Hein, C. Angioni, Phys. Plasmas 17, 012307 (2010)

    Article  ADS  Google Scholar 

  7. T. Fülöp, J. Weiland, Phys. Plasmas 13, 112504 (2006)

    Article  ADS  Google Scholar 

  8. C. Angioni, A.G. Peeters, Phys. Rev. Lett. 96, 095003 (2006)

    Article  ADS  Google Scholar 

  9. S.S. Henderson, L. Garzotti et al., Nucl. Fusion 54, 093013 (2014)

    Article  ADS  Google Scholar 

  10. C. Angioni, A.G. Peeters et al., Nucl. Fusion 49, 055013 (2009)

    Article  ADS  Google Scholar 

  11. J.Q. Dong, W. Horton et al., Phys. Plasmas 1, 3250 (1994)

    Article  ADS  Google Scholar 

  12. D.R. McCarthy, S. Maurer, Phys. Rev. Lett. 81, 3399 (1998)

    Article  ADS  Google Scholar 

  13. D.R. McCarthy, A.E. Booth et al., Phys. Plasmas 4, 300 (1997)

    Article  ADS  Google Scholar 

  14. A. Dimits, B. Cohen et al., Nucl. Fusion 40, 1725 (2001)

    Article  ADS  Google Scholar 

  15. Y. Kosuga, S.I. Itoh et al., Plasma Fusion Res. 10, 3401024 (2015)

    Article  ADS  Google Scholar 

  16. N. D’Angelo, Phys. Fluids 8, 1748 (1965)

    Article  ADS  Google Scholar 

  17. P.J. Catto, Phys. Fluids 16, 1719 (1973)

    Article  ADS  Google Scholar 

  18. G. Wang, L. Wang et al., Plasma Phys. Control. Fusion 40, 429 (1998)

    Article  ADS  Google Scholar 

  19. W.X. Wang, S. Ethier et al., Nucl. Fusion 55, 122001 (2015)

    Article  ADS  Google Scholar 

  20. J.Q. Dong, W.B. Xu et al., Phys. Plasmas 5, 4328 (1998)

    Article  ADS  Google Scholar 

  21. X. Garbet, Y. Sarazin et al., Phys. Plasmas 9, 3893 (2002)

    Article  ADS  Google Scholar 

  22. S.S. Kim, H. Jhang et al., Nucl. Fusion 51, 073021 (2011)

    Article  ADS  Google Scholar 

  23. W. Guo, L. Wang et al., Phys. Plasmas 23, 112301 (2016)

    Article  ADS  Google Scholar 

  24. W. Guo, L. Wang et al., Nucl. Fusion 59, 076012 (2019)

    Article  ADS  Google Scholar 

  25. W. Guo, M. Zhang et al., Nucl. Fusion 61, 016020 (2021)

    Article  ADS  Google Scholar 

  26. W. Guo, L. Wang et al., Nucl. Fusion 57, 126052 (2017)

    Article  ADS  Google Scholar 

  27. J.C. Adam, W.M. Tang et al., Phys. Fluids 19, 561 (1976)

    Article  ADS  Google Scholar 

  28. M.R. Wade, D.L. Hillis et al., Phys. Plasmas 2, 2357 (1995)

    Article  ADS  Google Scholar 

  29. O. Schmitz, K. Ida et al., Nucl. Fusion 56, 106011 (2016)

    Article  ADS  Google Scholar 

  30. S. Moradi, I. Pusztai et al., Phys. Plasmas 19, 032301 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the many discussions during the 1st CFEC in Leshan, China. We also acknowledge Profs. Xiaogang Wang, Vincent Chan, P. H. Diamond and K. Ida for useful and interesting discussions. This work is supported by the National Key R&D Program of China under Grant No. 2017YFE0302000, the National Natural Science Foundation of China under Grant Nos.11905079 and 11675059, 51821005, and the Initiative Postdocs Supporting Program of China under Grant No. BX20180105 and the Fundamental Research Funds for the Central Universities, HUST: 2021XXJS007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weixin Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, W., Zhang, M. Effects of Micro-turbulence on the Removal of Helium Ash in Deuterium–Tritium Plasmas. J Fusion Energ 40, 8 (2021). https://doi.org/10.1007/s10894-021-00303-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10894-021-00303-7

Keywords

Navigation