Skip to main content
Log in

Removal of Pb2+, Cu2+, and Cd2+ Ions from a Saline Wastewater Using Emulsion Liquid Membrane: Applying Response Surface Methodology for Optimization and Data Analysis

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Remote and mobile refineries are designed to utilize local groundwater (if abundantly available) to meet their industrial applications and inner uses. However, groundwater usually suffers hardness and salinity. Therefore, reverse osmosis (RO) technology is applied to treat the groundwater before use. The RO concentrate water stream is mixed with other refinery wastewater effluents resulting in a high saline wastewater. Upon discharging the refinery wastewater in constructed or natural lagoons, organic and non-organic pollutants permeate to groundwater reservoirs (aquifers) causing groundwater contamination build-up. The present study adopted the response surface methodology (RSM) to evaluate and optimize the simultaneous extraction of Pb2+, Cu2+, and Cd2+ ions from a refinery saline wastewater using emulsion liquid membrane (ELM). The experimental results were compared with those obtained from a previous study conducted for a simulated synthetic wastewater. Lower removal efficiencies of Pb2+, Cu2+, and Cd2+ ions were noticed for the refinery (real) wastewater due to possible interactions between dissolved salts of salinity, and metal ions. The lower removal efficiencies are due to the potential chemical complexation of the heavy metal ions with the petroleum organic and inorganic anions during the cations/carrier complexation at the wastewater/membrane interface which hinders the free migration of the metal ions. Also higher breakage was observed to cause lower stability of the ELM system in comparison with the simulated synthetic wastewater system. The impacts of the feed pH (2–6), homogenizer speed (5700–19,700 rpm), surfactant concentration (2–6%v/v), and carrier concentration (2–6%v/v) on the removal efficiencies of the Pb2+, Cu2+, and Cd2+ ions were investigated. The results of the regression analysis showed that experimental data could be fitted to quadratic models with values of determination coefficients (R2) equal to 91.18%, 88.91%, and 91.16% for Pb2+, Cu2+, and Cd2+ respectively. Maximum removal efficiencies of 92.33%, 88.98%, and 76.29% for Pb2+, Cu2+, and Cd2+ ions respectively were obtained at the optimum operating conditions of feed pH of 5.15, homogenizer speed of 5700 rpm, surfactant concentration of 3.97% v/v, and carrier concentration of 6% v/v.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Michiaki, M.; Abhishek, P.; Yuuki, M.; Kazuo, K.: Effect of ammonium-and phosphonium-based ionic liquids on the separation of lactic acid by supported ionic liquid membranes (SILMs). Membranes 1, 98–108 (2011)

    Article  Google Scholar 

  2. Begum, K.M.M.S.; Venkatesan, S.; Anantharaman, N.: Emulsion liquid membrane pertraction of metal ions from aqueous solutions and electroplating effluent using rotating disk contactor. Chem. Eng. Commun. 199, 1575–1595 (2012)

    Article  Google Scholar 

  3. Kim, S.M.; Na, J.G.; Lee, M.K.M.; Ryu, H.; Chang, Y.K.; Triolo, J.M.; Yun, Y.M.; Kim, D.H.: More value from food waste: lactic acid and biogas recovery. Water Res. 96, 208–216 (2016)

    Article  Google Scholar 

  4. Mohammed, A.A.; Hussein, M.A.; Albdiri, A.D.Z.: Application of bulk liquid membrane technique for cadmium extraction from aqueous solution. Arab. J. Sci. Eng (2018). https://doi.org/10.1007/s13369-017-3039-4

    Article  Google Scholar 

  5. Albdiri, A.D.Z.; Mohammed, A.A.; Hussein, M.; Koter, S.: Modeling of lead ions transport through a bulk liquid membrane. Desalin. Water Treat. 181, 213–220 (2020). https://doi.org/10.5004/dwt.2020.25098

    Article  Google Scholar 

  6. Koter, S.; Szczepanśki, P.; Mateescu, M.; Nechifor, G.; Badalau, L.; Koter, I.: Modeling of the cadmium transport through a bulk liquid membrane. Sep. Purif. Technol. (2013). https://doi.org/10.1016/j.seppur.2013.01.032

    Article  Google Scholar 

  7. Kumbasar, R.A.: Selective extraction of chromium(VI) from multicomponent acidic solutions by emulsion liquid membranes using tributhylphosphate as carrier. J. Hazard. Mater. 178, 875–882 (2010)

    Article  Google Scholar 

  8. Kumar, A.; Thakur, A.; Panesar, P.S.: A review on emulsion liquid membrane (ELM) for the treatment of various industrial effluent streams . Rev. Environ. Sci. Biotechnol (2019). https://doi.org/10.1007/s11157-019-09492-2

    Article  Google Scholar 

  9. Gega, J.; Walkowiak, W.; Gajda, B.: Separation of Co(II) and Ni(II) ions by supported and hybrid liquid membranes. Sep. Purif. Technol. 22–23, 551–558 (2001)

    Article  Google Scholar 

  10. Wood, R.A.; Roscoe, R.V.: The isolation of manganese in a system between bis (2- ethyl-hexyl) hydrogen phosphate and aqueous nitric acid. J. Inorgan. Nucl. Chem 32, 1351–1355 (1970)

    Article  Google Scholar 

  11. Sahoo, G.C.; Dutta, N.N.: Studies on emulsion liquid membrane extraction of cephalexin. J. Membr. Sci 145, 15–26 (1998)

    Article  Google Scholar 

  12. Mohammed, A.A.; Selman, H.M.; Abukhanafer, G.: Liquid surfactant membrane for lead separation from aqueous solution: studies on emulsion stability and extraction efficiency. J. Environ. Chem. Eng. 6(6), 6923–6930 (2018). https://doi.org/10.1016/j.jece.2018.10.02

    Article  Google Scholar 

  13. Zarandi, M.N.; Soltani, A.: Emulsion liquid membrane design in vitro for removal of lead from aqueous solution. Orient. J. Chem. 34(6), 2747–2754 (2018). https://doi.org/10.13005/ojc/340609

    Article  Google Scholar 

  14. Ma, H.; Kökkılıç, O.; Waters, K.E.: The use of the emulsion liquid membrane technique to remove copper ions from aqueous systems using statistical experimental design. Miner. Eng. 107, 88–99 (2017). https://doi.org/10.1016/j.mineng.2016.10.014

    Article  Google Scholar 

  15. Lu, D.; Chang, Y.; Wang, W.; Xie, F.; Asselin, E.; Dreisinger, D.: Copper and cyanide extraction with emulsion liquid membrane with LIX 7950 as the mobile carrier: part 1, emulsion stability. Metals (Basel) 5(4), 2034–2047 (2015). https://doi.org/10.3390/met5042034

    Article  Google Scholar 

  16. Ahmad, A.L.; Kusumastuti, A.; Derek, C.J.C.; Ooi, B.S.: Emulsion liquid membrane for cadmium removal: studies on emulsion diameter and stability. Desalination 287, 30–34 (2012). https://doi.org/10.1016/j.desal.2011.11.002

    Article  Google Scholar 

  17. Benderrag, A.; Haddou, B.; Daaou, M.; Benkhedja, H.; Bounaceur, B.; Kameche, M.: Experimental and modeling studies on Cd(II) ions extraction by emulsion liquid membrane using Triton X-100 as biodegradable surfactant. J. Environ. Chem. Eng. (2019). https://doi.org/10.1016/j.jece.2019.103166

    Article  Google Scholar 

  18. Shamkhi, H.A.; Albdiri, A.D.Z.; Jabir, F.A.; Koter, S.S.: Experimental and modeling studies on simultaneous extraction of Pb2+, Cu2+, and Cd2+ from diluted acidic aqueous solutions by emulsion liquid membrane Chem. Eng. Commun (2020). https://doi.org/10.1080/00986445.2020.1855152

    Article  Google Scholar 

  19. Jabbari, A.; Esmaeili, M.; Shamsipur, M.: Selective transport of mercury as Hg2Cl42− through a bulk liquid membrane using K+-dicyclohexyl-18-crown-6 as a carrier. Sep. Purif. Technol. 24, 139 (2001)

    Article  Google Scholar 

  20. Umar, M.; Aziz, H.A.; Yusoff, M.S.: Assessing the chlorine disinfection of landfill leachate and optimization by response surface methodology (RSM). Desalination 274(1–3), 278–283 (2011)

    Article  Google Scholar 

  21. Goyal, R.K.; Jayakumar, N.S.; Hashim, M.A.: A comparative study of experimental optimization and response surface optimization of Cr removal by emulsion ionic liquid membrane. J. Hazard. Mater. 195, 383–390 (2011)

    Article  Google Scholar 

  22. Gupta, S.; Chakraborty, M.; Murthy, Z.V.P.: Response surface modeling and optimization of mercury extraction through emulsion liquid membrane. Sep. Sci. Technol. 46, 2332–2340 (2011)

    Article  Google Scholar 

  23. Nazim, M.; Pal, P.; Al, S.A.; Elkamel, A.: Optimization of the cementation process for the removal of copper in process effluent discharges. Chem. Eng. Technol. 35(10), 1744–1755 (2012)

    Article  Google Scholar 

  24. Parhi, P.K.; Sarangi, K.; Mohanty, S.: Process optimization and extraction of nickel by hollow fiber membrane using response surface methodology. Miner. Metall. Process. 29(4), 225–230 (2012)

    Google Scholar 

  25. Sabah, H.; Thouraya, T.; Melek, H.; Nadia, M.: Application of response surface methodology for optimization of cadmium ion removal from an aqueous solution by eggshell powder. Chem. Res. Chin. Univ. 34(2), 302–310 (2018)

    Article  Google Scholar 

  26. Sudamalla, P.; Saravanan, P.; Matheswaran, M.: Optimization of operating parameters using response surface methodology for adsorption of crystal violet by activated carbon prepared from mango kernel. Environ. Res 22(1), 1–7 (2012)

    Google Scholar 

  27. Prabhakaran, D.; Basha, C.A.; Kannadasan, T.; Aravinthan, P.: Removal of hydroquinone from water by electrocoagulation using flow cell and optimization by response surface methodology. J. Environ. Sci. Health A 45(4), 400–412 (2010)

    Article  Google Scholar 

  28. Khataee, A.R.; Zarei, M.; Moradkhannejhad, L.: Application of response surface methodology for optimization of azo dye removal by oxalate catalyzed photoelectro-Fenton process using carbon nanotube-PTFE cathode. Desalination 258(1–3), 112–119 (2010)

    Article  Google Scholar 

  29. Körbahti, B.K.: Response surface optimization of electrochemical treatment of textile dye wastewater. J. Hazard. Mater. 145(1–2), 277–286 (2007)

    Article  Google Scholar 

  30. Thirugnanasambandham, K.; Sivakumar, V.; Prakash, M.J.: Treatment of egg processing industry effluent using chitosan as an adsorbent. J. Serb. Chem. Soc. 79(6), 743–757 (2014)

    Article  Google Scholar 

  31. Sulaymon, A.H.; Mohammed, S.A.M.; Abbar, A.H.: Cadmium removal from simulated chloride wastewater using a novel flow-by fixed bed electrochemical reactor: Taguchi approach. Desalin. Water Treat. 74, 197–206 (2017)

    Article  Google Scholar 

  32. Mohammed, A.A.; Atiya, M.A.; Hussein, M.A.: Studies on membrane stability and extraction of ciprofloxacin from aqueous solution using pickering emulsion liquid membrane stabilized by magnetic nano-Fe2O3. Colloids Surf. A Physicochem. Eng. Asp. 585, 124044 (2020). https://doi.org/10.1016/j.colsurfa.2019.124044

    Article  Google Scholar 

  33. Salman, H.M.; Mohammed, A.A.: Extraction of lead ions from aqueous solution by co-stabilization mechanisms of magnetic Fe2O3 particles and nonionic surfactants in emulsion liquid membrane. Colloids Surf. A Physicochem. Eng. Asp. 568, 301–310 (2019). https://doi.org/10.1016/j.colsurfa.2019.02.018

    Article  Google Scholar 

  34. Chiha, M.; Samar, M.H.; Hamdaoui, O.: Extraction of chromium(VI) from sulphuric acid aqueous solutions by a liquid surfactant membrane (LSM). Desalination 194(1–3), 69–80 (2006). https://doi.org/10.1016/j.desal.2005.10.025

    Article  Google Scholar 

  35. Chiha, M.; Hamdaoui, O.; Ahmedchekkat, F.; Pétrier, C.: Study on ultrasonically assisted emulsification and recovery of copper(II) from wastewater using an emulsion liquid membrane process. Ultrason. Sonochem. 17(2), 318–325 (2006). https://doi.org/10.1016/j.ultsonch.2009.09.001

    Article  Google Scholar 

  36. Laki, S.; Kargari, A.: Extraction of silver ions from aqueous solutions by emulsion liquid membrane. J. Membr. Sci. Res. 2(1), 33–40 (2016). https://doi.org/10.22079/jmsr.2016.15876

    Article  Google Scholar 

  37. Bezerra, M.A.; Santelli, R.E.; Oliveira, E.P.; Villar, L.S.; Escaleira, L.A.: Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76(5), 965–977 (2008). https://doi.org/10.1016/j.talanta.2008.05.019

    Article  Google Scholar 

  38. Yetilmezsoy, K.; Demirel, S.; Vanderbei, R.J.: Response surface modeling of Pb(II) removal from aqueous solution by Pistacia vera L.: Box–Behnken experimental design. J. Hazard. Mater. 171(1–3), 551–562 (2009)

    Article  Google Scholar 

  39. Rajasimman, M.; Sangeetha, R.; Karthik, P.: Statistical optimization of process parameters for the extraction of chromium(VI) from pharmaceutical wastewater by emulsion liquid membrane. Chem. Eng. J. 150(2), 275–279 (2009)

    Article  Google Scholar 

  40. Jiao, H.P.; Peng, W.; Zhao, J.T.; Xu, C.J.: Extraction performance of bisphenol A from aqueous solutions by emulsion liquid membrane using response surface methodology. Desalination 313(15), 36–43 (2013)

    Article  Google Scholar 

  41. Huiping, L.; Guoqun, Z.; Shanting, N.; Yiguo, L.: Technologic parameter optimization of gas quenching process using response surface method. Comput. Mater. Sci. 38(4), 561–570 (2007)

    Article  Google Scholar 

  42. Jiao, H.; Peng, W.; Zhao, J.; Xu, C.: Extraction performance of bisphenol A from aqueous solutions by emulsion liquid membrane using response surface methodology. DES 313, 36–43 (2013). https://doi.org/10.1016/j.desal.2012.12.002

    Article  Google Scholar 

  43. Raji, M.; Abolghasemi, H.; Safdari, J.; Kargari, A.: Response surface optimization of dysprosium extraction using an emulsion liquid membrane integrated with multi-walled carbon nanotubes. Chem. Eng. Technol. 41(9), 1857–1870 (2018). https://doi.org/10.1002/ceat.201700351

    Article  Google Scholar 

  44. Moradi, M.; Alvarado, V.; Huzurbaza, S.: (2010) Effect of salinity on water-in-crude oil emulsion: evaluation through drop-size distribution proxy. Energy Fuels 25, 260–268 (2011). https://doi.org/10.1021/ef101236h

    Article  Google Scholar 

  45. Ostad-Ali-Askari, K.; Shayannejad, M.; Ghorbanizadeh Kharazi, H.: Artificial neural network for modeling nitrate pollution of groundwater in marginal area of Zayandeh-Rood River, Isfahan, Iran. KSCE J. Civ. Eng. Korean Soc. Civ. Eng. 21(1), 134–140 (2016). https://doi.org/10.1007/s12205-016-0572-8

    Article  Google Scholar 

  46. Asadian, H.; Ahmadi, A.: The extraction of gallium from chloride solutions by emulsion liquid membrane: optimization through response surface methodology . Miner. Eng (2020). https://doi.org/10.1016/j.mineng.2020.106207

    Article  Google Scholar 

Download references

Acknowledgements

The financial support of the DOS through the IREX organization to conduct a groundwater remediation project at Ash Shinafiyah desert, Iraq, is highly appreciated. The appreciation is also extended to the administrative and technical staff of the Ad Diwaniyah refinery, Al-Qadisiyah province, Iraq, for their assistance in carrying out some of the tests at the central laboratory of the refinery.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amer D. Z. Albdiri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamkhi, H.A., Albdiri, A.D.Z., Jabir, F.A. et al. Removal of Pb2+, Cu2+, and Cd2+ Ions from a Saline Wastewater Using Emulsion Liquid Membrane: Applying Response Surface Methodology for Optimization and Data Analysis. Arab J Sci Eng 47, 5705–5719 (2022). https://doi.org/10.1007/s13369-021-05624-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05624-5

Keywords

Navigation