Skip to main content
Log in

Asymmetric development of the Himalaya: quantitative evidence from strain analysis in Kimin-Ziro-Tamen area, Arunachal Lesser Himalaya, India

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The eastern segment of the Himalaya makes a quarter of the mountain belt. While its plate tectonic setting is well understood, the intensity of deformation along the thrusts is not well constrained. This knowledge gap has restricted a quantitative comparison of deformation and crustal shortening in the Eastern Lesser Himalaya with the Central and Western Lesser Himalaya. In this study field evidence, together with microstructural investigations, and two-dimensional (2D) finite strain analysis are used to decipher the deformation pattern in the Kimin-Ziro-Tamen area of the Eastern Lesser Himalaya. Present investigations reveal that micro-to-outcrop-scale structures such as plastically deformed quartz grains, crenulation cleavages, S-C fabric, pull-apart grains, pinch-n-swell structures, boudins and faults confirm that the rocks have been subjected to ductile and brittle-ductile phases of deformation with a regional top-to-south shear sense. The 2D finite strain estimated here is comparable to that in other parts of Eastern Lesser Himalaya, such as the Sikkim and Bhutan Himalaya. However, the strain estimated here is higher than in the Central and Western Lesser Himalaya, such as in the Central Nepal Himalaya, Almora Crystalline Zone, the Garhwal Lesser Himalaya and the Hazara-Kashmir Syntaxis in Pakistan. This provides quantitative proofs of greater deformation and crustal shortening in the Eastern Lesser Himalaya than the Central and Western Himalaya, and of the asymmetric development of Himalaya.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Acharyya SK (1998) Thrust tectonics and evolution of domes and the syntaxis in eastern Himalaya, India. J Nepal Geol Soc 18:1–17

    Google Scholar 

  • Agarwal KK, Bali R, Kumar GM, Srivastava P, Singh PV (2009) Active tectonics in and around Kimin-Ziro area, Lower Subansiri District, Arunachal Pradesh, NE India. Zeitschrift fur Geomorphologie 53(1):109–120

    Article  Google Scholar 

  • Agarwal KK, Jahan N, Agarwal A (2010a) Modification of fold geometry in Almora Crystalline Shear Zone, Lesser Himalaya, India. J Geol Soc India 75:411–414. https://doi.org/10.1007/s12594-010-0037-5

    Article  Google Scholar 

  • Agarwal KK, Bali R, Patil SK, Nawaz Ali S (2010b) Anisotropy of magnetic susceptibility in the Almora Crystalline Zone Lesser Himalaya, India: a case study. Asian J Earth Sci 3:1–10

    Google Scholar 

  • Agarwal A, Agarwal KK, Bali R, Prakash C, Joshi G (2016) Back-thrusting in Lesser Himalaya: evidences from magnetic fabric studies in parts of Almora Crystalline Zone, Kumaun lesser Himalaya. J Earth Syst Sci 125:873–884. https://doi.org/10.1007/s12040-016-0699-5

    Article  Google Scholar 

  • Agarwal A, Poelchau MH, Kenkmann T (2019a) Kinked biotite as a strain marker in experimental impact craters in gneiss. In: Lunar and planetary science conference. Houston, TX, USA

  • Agarwal A, Poelchau MH, Kenkmann T, Rae A, Ebert M (2019b) Impact experiment on gneiss: the effects of foliation on cratering process. J Geophys Res Solid Earth 124:13532–13546. https://doi.org/10.1029/2019JB018345

    Article  Google Scholar 

  • Ahmad S, Ali A, Rehman K (2017) The interrelationship of micro-meso and macroscopic structures on the western limb of the Hazara Kashmir Syntaxis, Pakistan. Acta Geol Sin 91:1573–1623. https://doi.org/10.1111/1755-6724.13401

    Article  Google Scholar 

  • Allmendinger RW, Cardozo N, Fisher D (2012) Structural geology algorithms: vectors and tensors. Cambridge University Press, Cambridge

    Google Scholar 

  • Anon (1974) Geology and mineral resources of the States of India—Assam and adjoining States. Geol Surv India Misc Publ 30:1–24

    Google Scholar 

  • Arbaret L, Burg JP (2003) Complex flow in lowest crustal, anastomosing mylonites: strain gradients in a Kohistan gabbro, northern Pakistan. J Geophys Res 108(B10):2467. https://doi.org/10.1029/2002JB002295

    Article  Google Scholar 

  • Ali A, Hussain M, Ali S, Hussain S, Ali W (2012) Kinematic evolution of the Middle Jurassic Samana Suk Formation, Hazara Division, Khyber Pakhtunkhwa. Pak J Himal Earth Sci 45(2):17–17

    Google Scholar 

  • Bhattacharjee S, Nandy S (2007) Geology of the Western Arunachal Himalaya in parts of Tawang and west Kameng districts, Arunachal Pradesh. J Geol Soc India 72:199–207

    Google Scholar 

  • Bhattacharyya K, Dwivedi HV, Das JP, Damania S (2015) Structural geometry, microstructural and strain analyses of L-tectonites from Paleoproterozoic orthogneiss: Insights into local transport-parallel constrictional strain in the Sikkim Himalayan fold thrust belt. J Asian Earth Sci 107:212–231. https://doi.org/10.1016/j.jseaes.2015.04.038

    Article  Google Scholar 

  • Bhushan SK, Bindal CM, Aggarwal RK (1991) Geology of Bomdila group in Arunachal Pradesh. Himal Geol 2(2):207–214

    Google Scholar 

  • Bose N, Mukherjee S (2019) Field documentation and genesis of the back-structures from the Garhwal Lesser Himalaya, Uttarakhand, India. Int J Earth Sci 108:1333–1350

    Article  Google Scholar 

  • Bose N, Dutta D, Mukherjee S (2018) Role of grain-size in phyllonitisation: Insights from mineralogy, microstructures, strain analyses and numerical modeling. J Struct Geol 112:39–52. https://doi.org/10.1016/j.jsg.2018.03.010

    Article  Google Scholar 

  • Bourke P (1987) Contouring algorithm. Byte 12(6):143

    Google Scholar 

  • Burg JP, Nievergelt P, Oberli F, Seward D, Davy P, Maurin JC, Diao ZZ, Meier M (1998) The Namche Barwa syntaxis: evidence for exhumation related to compressional crustal folding. J Asian Earth Sci 16:239–252. https://doi.org/10.1016/S0743-547(98)00002-6

    Article  Google Scholar 

  • Cardozo N, Allmendinger RW (2013) Spherical projections with OSX Stereonet. Comput Geosci 51:193–205. https://doi.org/10.1016/j.cageo.2012.07.021

    Article  Google Scholar 

  • Clarke GL, Bhowmik SK, Ireland TR, Aitchison JC, Chapman SL, Kent L (2016) Inverted Oligo-Miocene metamorphism in the Lesser Himalaya sequence, Arunachal Pradesh, India: age and grade relationships. J Metamorph Geol 34(8):805–820. https://doi.org/10.1111/jmg.12202

    Article  Google Scholar 

  • Das AK, Bakliwal PC, Dhoundial DP (1975) A brief outline of geology of parts of Kameng district, NEFA. Geol Surv India Misc Publ 24(1):115–127

    Google Scholar 

  • DeCelles PG, Robinson DM, Zandt G (2002) Implications of shortening in the Himalayan fold-thrust belt for uplift of the Tibetan Plateau. Tectonics 21(6):1062–1087. https://doi.org/10.1029/2001TC001322

    Article  Google Scholar 

  • DeCelles PG, Carrapa B, Gehrels GE, Chakraborty T, Ghosh P (2016) Along-strike continuity of structure, stratigraphy, and kinematic history in the Himalayan thrust belt: the view from Northeastern India. Tectonics 35:2995–3027. https://doi.org/10.1002/2016TC004298

    Article  Google Scholar 

  • De Paor DG (1980) Some limitations of the Rf/φ technique of strain analysis. Tectonophysics 64:T29–T31

    Article  Google Scholar 

  • Dewey JF, Cande S, Pitman WC (1989) Tectonic evolution of the India-Eurasian collision zone. Eclogae Geol Helv 82:717–734

    Google Scholar 

  • Ding L, Zhong DL, Yin A, Kapp P, Harrison TM (2001) Cenozoic structural and metamorphic evolution of the eastern Himalayan syntaxis (Namche Barwa). Earth Planet Sci Lett 192:423–438. https://doi.org/10.1016/S0012-821X(01)00463-0

    Article  Google Scholar 

  • Dunnet D (1969) A technique of finite strain analysis using elliptical particles. Tectonophysics 7:117–136

    Article  Google Scholar 

  • Elliott D (1976) The motion of thrust sheets. J Geophys Res 81:949–963. https://doi.org/10.1029/JB081i005p00949

    Article  Google Scholar 

  • Gansser A (1964) Geology of the Himalayas. Interscience, London, p 289

    Google Scholar 

  • Goswami S, Bhowmik SK, Dasgupta S (2009) Petrology of a non-classical Barrovian inverted metamorphic sequence from the western Arunachal Himalaya, India. J Asian Earth Sci 36:390–406

    Article  Google Scholar 

  • Goswami TK, Bezbaruah D, Mukherjee S, Sharmah RK, Jabeed S (2018) Structures and morphotectonic evolution of the frontal fold-thrust belt, Kameng river section, Arunachal Himalaya. India Jour Earth Sys Sci 127:88

    Article  Google Scholar 

  • Goswami TK, Mahanta BN, Mukherjee S, Syngari BR, Sarmah RK (2020) Orogen-transverse structures in the eastern Himalaya: Dextral Riedel shear along the Main Boundary Thrust in the Garu-Gensi area (Arunachal Pradesh, India), implication in hydrocarbon geoscience. Mar Pet Geol 114:104242

    Article  Google Scholar 

  • Grujic D, Coutand I, Bookhagen B, Bonnet S, Blythe A, Duncan C (2006) Climatic forcing of erosion, landscape and tectonics in the Bhutan Himalaya. Geology 34:801–804. https://doi.org/10.1130/G22648.1

    Article  Google Scholar 

  • Guillot S, Cosca M, Allemand P, Le Fort P (1999) Contrasting metamorphic and geochronologic evolution along the Himalayan belt. In: Himalaya and Tibet: mountain roots to mountain tops. Geological Society of America. https://doi.org/10.1130/0-8137-2328-0.117

  • Jain AK, Anand A (1988) Deformational and strain patterns of an intracontinental collision ductile shear zone—an example from the Higher Garhwal Himalaya. J Struct Geol 10:717–734. https://doi.org/10.1016/0191-8141(88)90079-X

    Article  Google Scholar 

  • Joshi G, Agarwal A, Agarwal KK, Srivastava S, Alva Valdivia LM (2017) Microstructures and strain variation: Evidence of multiple splays in the North Almora Thrust Zone, Kumaun Lesser Himalaya, Uttarakhand, India. Tectonophysics 694:239–248. https://doi.org/10.1016/j.tecto.2016.11.008

    Article  Google Scholar 

  • Joshi N, Singh S, Pant PD, Puniya MK, Kothyari GC (2019) Polyphase or time-dependent kinematics and quaternary reactivation of thrust bounding BaijnathKlippe: western Kumaun Himalaya, India. Int J Earth Sci 108:455–473. https://doi.org/10.1007/s00531-018-1662-2

    Article  Google Scholar 

  • Karunakaran C, Rao RA (1976) Status of exploration of hydrocarbon in the Himalayan region—contributions to stratigraphy and structure. Geol Soc India Misc Publ 41:1–66

    Google Scholar 

  • Kawamitsu K, Hayashi D (1991) Geology and three dimensional finite strain analysis around Annapurna Himal, central Nepal. Bull. Fac. Sci. University of the Ryukyus, No 52:37–52

    Google Scholar 

  • Khanal S, Robinson DM (2013) Upper crustal shortening and forward modeling of the Himalayan thrust belt along the Budhi-Gandaki River, Central Nepal. Int J Earth Sci 102:1871–1891

    Article  Google Scholar 

  • Kohn MJ, Wieland MS, Parkinson CD, Upreti BN (2004) Miocene faulting at plate tectonic velocity in the Himalaya of central Nepal. Earth Planet Sci Lett 228:299–310

    Article  Google Scholar 

  • Kumar G (1997) Geology of Arunachal Pradesh. J Geol Soc India Bangalore 217

  • Kumar S, Singh T (1980) Tectono-stratigraphic set-up of the Subansiri district, Arunachal Pradesh. In: Valdiya KS, Bhatia SB (eds) Stratigraphy and correlation of lesser Himalayan Formations. Hindustan Publishing Corporation (India), Delhi, pp 267–279

  • Kumar L, Joshi G, Agarwal KK (2020) Morphometry and morphostructural studies of the parts of Gola and Kalsa River Basins, Chanphi-Okhalkanda region, Kumaun Lesser Himalaya, India. Geotectonics 54(3):410–427. https://doi.org/10.1134/S0016852120030048

    Article  Google Scholar 

  • Larson KM, Burgmann R, Bilham R, Freymueller JT (1999) Kinematics of the India-Eurasia collision zone from GPS measurements. J Geophys Res 104:1077–1093. https://doi.org/10.1029/1998JB900043

    Article  Google Scholar 

  • Lave J, Avouac JP (2000) Active folding of fluvial terraces across the Siwaliks Hills, Himalayas of central Nepal. J Geophys Res 105(3):5735–5770. https://doi.org/10.1029/1999JB900292

    Article  Google Scholar 

  • Le Fort P (1975) Himalayas: the collided range. Present knowledge of the continental arc. Am J Sci 275(A):1–44

    Google Scholar 

  • Lisle RJ (1985) Geological strain analysis: a manual for the Rf/ø method. Pergamon Press

  • Long S, McQuarrie N, Tobgay T, Grujic D (2011a) Geometry and crustal shortening of the Himalayan fold-thrust belt, eastern and central Bhutan. Geol Soc Am Bull 123:1427–1447. https://doi.org/10.1130/B30203.1

    Article  Google Scholar 

  • Long S, McQuarrie N, Tobgay T, Hawthorne J (2011b) Quantifying internal strain and deformation temperature in the eastern Himalaya, Bhutan: implications for the evolution of strain in thrust sheets. J Struct Geol 33:579–608. https://doi.org/10.1016/j.jsg.2010.12.011

    Article  Google Scholar 

  • Long SP, McQuarrie N, Tobgay T, Coutand I, Cooper FJ, Reiners PW, Wartho J, Hodges KV (2012) Variable shortening rates in the eastern Himalayan thrust belt, Bhutan:insights from multiple thermochronologic and geochronologic datasets tied to kinematicreconstructions. Tectonics 31:TC5004. https://doi.org/10.1029/2012TC003155

    Article  Google Scholar 

  • Long SP, Gordon SM, Young JP, Soignard E (2016) Temperature and strain gradients through Lesser Himalayan rocks and across the Main Central Thrust, south central Bhutan: Implications for transport-parallel stretching and inverted metamorphism. Tectonics 35(8):1863–1891. https://doi.org/10.1002/2016TC004242

    Article  Google Scholar 

  • Long SP, Gordon SM, Soignard E (2017) Distributed north-vergent shear and flattening through Greater and Tethyan Himalayan rocks: Insights from metamorphic and strain data from the Dang Chu region, central Bhutan. Lithosphere 9:774–795. https://doi.org/10.1130/L655.1

    Article  Google Scholar 

  • Long SP, Mullady CL, Starnes JK, Gordon SM, Larson KP, Pianowski LS, Miller RB, Soignard E (2019) A structural model for the South Tibetan detachment system in northwestern Bhutan from integration of temperature, fabric, strain, and kinematic data. Lithosphere 11(4):465–487. https://doi.org/10.1130/L1049.1

    Article  Google Scholar 

  • Mathew G, De Sarkar S, Pande K, Dutta S, Ali S (2013) Thermal metamorphism of the Arunachal Himalaya, India: Raman thermometry and thermochronological constraints on the tectono-thermal evolution. Int Jour Earth Sci 102:1911–1936

    Article  Google Scholar 

  • McQuarrie N, Tobgay T, Long SP, Reiners PW, Cosca MA (2014) Variable exhumation rates and variable displacement rates: documenting recent slowing of Himalayan shortening in western Bhutan. Earth Planet Sci Lett 386:161–174

    Article  Google Scholar 

  • Mitra G, Bhattacharyya K, Mukul M (2010) The lesser Himalayan Duplex in Sikkim: implications for variations in Himalayan shortening. J Geol Soc India 75(1):289–301. https://doi.org/10.1007/s12594-010-0016-x

    Article  Google Scholar 

  • Mugnier JL, Huyghe P, Leturmy P, Jouanne F (2003) Episodicity and rates of thrust sheet motion in Himalaya (western Nepal). In: McClay KR (eds) Thrust tectonics and hydrocarbon systems: American Association of Petroleum Geologists Memoir, vol 82, pp 1–24

  • Mukherjee S (2013a) Channel flow extrusion model to constrain dynamic viscosity and Prandtl number of the Higher Himalayan Shear Zone. Int J Earth Sci 102:1811–1835

    Article  Google Scholar 

  • Mukherjee S (2013b) Higher Himalaya in the Bhagirathi section (NW Himalaya, India): its structures, backthrusts and extrusion mechanism by both channel flow and critical taper mechanisms. Int J Earth Sci 102:1851–1870. https://doi.org/10.1007/s00531-012-0861-5

    Article  Google Scholar 

  • Mukherjee S, Punekar J, Mahadani T, Mukherjee R (2015) A review on intrafolial folds and their morphologies from the detachments of the western Indian Higher Himalaya. In: Mukherjee S, Mulchrone KF (eds) Ductile shear zones: from micro- to macro-scales. Wiley Blackwell, pp 182–205

  • Ningthoujam PS, Dubey CS, Lolee LK, Shukla DP, Naorem SS, Singh SK (2015) Tectonic studies and crustal shortening across easternmost Arunachal Himalaya. J Asian Earth Sci 111:339–349. https://doi.org/10.1016/j.jseaes.2015.07.003

    Article  Google Scholar 

  • Ojha AK, Sharma R, Srivastava DC, Lister GS (2019) Polyphase development of chocolate-tablet boudins in the SAT zone, Kumaun Lesser Himalaya. India J Struct Geol 127:103863. https://doi.org/10.1016/j.jsg.2019.103863

    Article  Google Scholar 

  • Panozzo RH (1983) Two-dimensional analysis of shape-fabric using projections of digitized lines in a plane. Tectonophysics 95:279–294

    Article  Google Scholar 

  • Panozzo R (1984) Two-dimensional strain from the orientation of lines in a plane. J Struct Geol 6:215–221

    Article  Google Scholar 

  • Panozzo R (1987) Two-dimensional strain determination by the inverse Surfor wheel. J Struct Geol 9:115–119

    Article  Google Scholar 

  • Parsons AJ, Hosseini K, Palin RM, Sigloch K (2020) Geological, geophysical and plate kinematic constraints for models of the India-Asia collision and the post-Triassic central Tethys oceans. Earth Sci Rev. https://doi.org/10.1016/j.earscirev.2020.103084

    Article  Google Scholar 

  • Passchier CW, Trouw RAJ (2005) Microtectonics, 2nd edn. Springer, Berlin

    Google Scholar 

  • Patriat P, Achache J (1984) India-Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates. Nature 311:615–621. https://doi.org/10.1038/311615a0

    Article  Google Scholar 

  • Ramsay JG (1967) Folding and fracturing of rocks. McGraw-Hill, New York, p 568

    Google Scholar 

  • Ramsay JG, Graham RH (1970) Strain variation in shear belts. Can J Earth Sci 7:786–813. https://doi.org/10.1139/e70-078

    Article  Google Scholar 

  • Ramsay JG, Huber MI (1983) Strain analysis. The techniques of modern structural geology. Strain analysis, vol 1. Academic Press, London, p 307

    Google Scholar 

  • Robinson DM, Martin AJ (2014) Reconstructing the Greater Indian margin: a balanced cross section in Central Nepal focusing on the Lesser Himalayan duplex. Tectonics 33:2143–2168

    Article  Google Scholar 

  • Robinson DM, DeCelles PG, Copeland P (2006) Tectonic evolution of the Himalayan thrust belt in western Nepal: Implications for channel flow models. Geol Soc Am Bull 118:865–885. https://doi.org/10.1130/B25911.1

    Article  Google Scholar 

  • Saha D, Sengupta D, Das S (2011) Along strike variation in the Himalayan orogen and its expression along major intracontinental thrusts—the case of MCT in Sikkim and Arunachal Pradesh, India. In: Tewari RP (eds) Geodynamics, sedimentation and biotic response in the context of India-Asia Collision, Memoir Geological Society of India, vol 77, pp 1–18.

  • Sanderson DJ (1982) Models of strain variation in nappes and thrust sheets: a review. Tectonophysics 88:201–233. https://doi.org/10.1016/0040-1951(82)90237-2

    Article  Google Scholar 

  • Schelling D (1992) The tectonostratigraphy and structure of the eastern Nepal Himalaya. Tectonics, vol. 11, no. 5, p. 925–943. https://doi.org/10.1029/92TC00213

  • Schelling D, Arita K (1991) Thrust tectonics, crustal shortening, and the structure of the far-eastern Nepal Himalaya. Tectonics 10:851–862

    Article  Google Scholar 

  • Searle MP (1986) Structural evolution and sequence of thrusting in the High Himalayan, Tibetan-Tethys, and Indus suture zones of Zanskar and Ladakh, western Himalaya. J Struct Geol 8:923–936. https://doi.org/10.1016/0191-8141(86)90037-4

    Article  Google Scholar 

  • Searle MP, Windley BF, Coward MP, Cooper DJW, Rex AJ, Rex D, Tingdong L, Xuchang X, Jan MQ, Thakur VC, Kumar S (1987) The closing of Tethys and the tectonics of the Himalaya. GSA Bull 98:678–701

    Article  Google Scholar 

  • Searle MP, Corfield RL, Stephenson B, McCarron J (1997) Structure of the north Indian continental margin in the Ladakh-Zanskar Himalayas: Implications for the timing of obduction of the Spontang ophiolite, India-Asia collision and deformational events in the Himalaya. Geol Mag 134:297–316. https://doi.org/10.1017/S0016756897006857

    Article  Google Scholar 

  • Singh PV (2012) Geology and structure of the Kimin-Ziro Transect, Arunachal Himalaya, with special reference to the thrust related deformation. Ph.D. thesis (Unpublished), University of Lucknow, Lucknow

  • Singh S (1993) Geology and tectonics of the eastern syntaxis bend, Arunachal Himalaya. J Himal Geol 4:149–163

    Google Scholar 

  • Singh RKB, Gururajan NS (2011) Microstructures in quartz and feldspar of the Bomdila gneiss from western Arunachal Himalaya. NE India: implication for the geotectonic evolution of the Bomdila mylonitic zone. J Asian Earth Sci 42:1163–1178

    Article  Google Scholar 

  • Singh RKB, Singh AK (2014) Microstructural and geochemical studies of Higher Himalayan Leucogranite: implications for geodynamic evolution of Tertiary Leucogranite in the Eastern Himalaya. Geol J 49(1):28–51

  • Singh RKB, Singh AK, Sen K, Sangode SJ (2017) Detection of a weak late-stage deformation event in granitic gneiss through anisotropy of magnetic susceptibility: implications for tectonic evolution of the Bomdila Gneiss in the Arunachal Lesser Himalaya, Northeast India. Geol Mag 154(3):476–490. https://doi.org/10.1017/S0016756816000133

  • Srivastava P, Mitra G (1994) Thrust geometries and deep structure of the outer and lesser Himalaya, Kumaon and Garwal (India): implications for evolution of the Himalayan fold-and-thrust belt. Tectonics 13:89–109. https://doi.org/10.1029/93TC01130

    Article  Google Scholar 

  • ten Grotenhuis SM, Trouw RAJ, Passchier CW (2003) Evolution of mica fish in mylonitic rocks. Tectonophysics 372:1–21. https://doi.org/10.1016/S0040-1951(03)00231-2

    Article  Google Scholar 

  • Tripathi C, Dungrakoti BD, Jain LS, Kaura SC, Basu Roy S, Laxmipathi NS (1980) Geology of Dirang-Doimara area, Kameng District, Arunachal Pradesh with special reference to structure and tectonics. Himal Geol 10:353–365

    Google Scholar 

  • Tripathy NR, Srivastava HB, Mamtani MA (2009) Evaluation of a regional strain gradient in mylonitic quartzites from the footwall of the Main Central Thrust Zone (Garhwal Himalaya, India): Inferences from finite strain and AMS analyses. J Asian Earth Sci 34:26–37. https://doi.org/10.1016/j.jseaes.2008.03.008

    Article  Google Scholar 

  • Verma PK, Tandon SK (1976) Geological observations in a part of the Kameng district, Arunachal Pradesh (NEFA). Himal Geol 6:259–286

    Google Scholar 

  • Warren C, Singh AK, Riberts NMW, Regis D, Halton AM, Singh RB (2014) Timing and conditions of peak metamorphism and cooling across the Zimithang thrust, Arunachal Pradesh, India. Lithosphere 200–201:94–110

    Google Scholar 

  • Yin A (2006) Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth Sci Rev 76:1–131

    Article  Google Scholar 

  • Yin A, Dubey CS, Kelty TK, Gehrels GE, Chou CY, Grove M, Lovera O (2006) Structural evolution of the Arunachal Himalaya and implications for asymmetric development of the Himalayan orogen. Curr Sci 90(2):195–206

    Google Scholar 

  • Yin A, Dubey CS, Kelty TK, Webb AAG, Harrison TM, Chou CY, Celerer J (2010) Geologic correlation of the Himalayan orogen and Indian craton: Part 2. Structural geology, geochronology, and tectonic evolution of the eastern Himalaya. GSA Bull 122:360–395. https://doi.org/10.1130/B26461.1

    Article  Google Scholar 

  • Zeitler PK, Koons PO, Bishop MP, Chamberlain CP, Craw D, Edwards MA, Hamidullah S, Jan MQ, Khan MA, Khattak MUK, Kidd WSF, Mackie RL, Meltzer AS, Park SK, Pecher A, Poage MA, Sarker G, Schneider DA, Seeber L, Shroder JF (2001) Crustal reworking at Nanga Parbat, Pakistan: metamorphic consequences of thermal-mechanical coupling facilitated by erosion. Tectonics 20:712–728. https://doi.org/10.1029/2000TC001243

    Article  Google Scholar 

  • Zhang ZM, Xiang H, Dong X, Li WC, Ding HX, Gou ZB, Tian ZL (2017) Oligocene HP metamorphism and anatexis of the Higher Himalayan Crystalline Sequence in Yadong region, east-central Himalaya. Gondwana Res 41:173–187. https://doi.org/10.1016/j.gr.2015.03.002

    Article  Google Scholar 

Download references

Acknowledgements

KKA, GJ and SS are thankful to the Head, Centre of Advanced Study in Geology, Lucknow University, Lucknow, India for providing the working facilities. GJ is also thankful to CSIR, Government of India for providing financial support in the form of SRF (09/107(0394)/2018-EMR-I). AA thanks the initiation grant of Indian Institute of Technology Kanpur and start-up grant (#SRG/2020/000470) by SERB-DST. This work is a part of the DST Project No. ESS/16/242/2005/Subansiri. Authors are thankful to Dr. Susanta K. Samanta, Dr. Sukanta Goswami and Dr. Soumyajit Mukherjee for their critical comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaurav Joshi.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (JPG 3850 kb)

Supplementary file2 (DOCX 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, G., Agarwal, A., Agarwal, K.K. et al. Asymmetric development of the Himalaya: quantitative evidence from strain analysis in Kimin-Ziro-Tamen area, Arunachal Lesser Himalaya, India. Int J Earth Sci (Geol Rundsch) 110, 1517–1530 (2021). https://doi.org/10.1007/s00531-021-02027-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-021-02027-7

Keywords

Navigation