Skip to main content
Log in

Influence of stiffener on fracture parameter and fatigue crack growth life of a finite aluminium alloy plate

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The present paper discusses the methodology for prediction of fracture parameter, fatigue crack growth life (FC) and inspection interval (II) considering the stiffener effect using Afgrow software of NASGRO crack growth model. Based on numerically predicted normalised stress intensity factor (β) using finite element method (FEM), correction factor (C.F.) in β of un-stiffened panel/plate is introduced to account for the stiffener effect. The β of stiffened plate is further used for prediction of fatigue crack growth life (FC) and II. The fracture parameters of stiffened panel for different crack lengths, stiffener area, and stiffener offset using FEM are predicted, which is further used for estimation of FC and II. The typical numerical prediction of fracture parameter using finite element method and FC with incorporation of C.F. using Afgrow software is compared with published experimental results and analytical prediction which show good conformity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig.4
Fig. 5
Fig.6
Fig.7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

A 1 and A 2 :

Stiffener area 1 and 2, mm2

B :

Hole offset distance, mm

a crit :

Critical crack length, mm

a crit_edge :

Critical edge crack length, mm

a det :

Detectable crack length, mm

c 1, c 2 :

Through crack length, mm

c s, c t :

Corner surface and bore crack length, mm

K = K max-K min :

Difference in stress intensity factor

D :

Diameter of fastener, mm

E :

Modulus of elasticity, GPa

F :

Applied load, N

K :

Stress intensity factor

K f :

Fracture toughness, MPa(m)1/2

N crit :

Critical fatigue crack growth life

N det :

Detectable fatigue crack life

N 1 :

Fatigue crack growth life for corner crack

N 2 :

Fatigue crack growth life for through crack

N 3 :

Fatigue crack growth life for edge crack

T :

Thickness of specimen, mm

Ta:

Attached flange thickness, mm

W :

Width of plate, mm

Wa:

Attached width, mm

X :

Stiffener offset, mm

β :

Normalised stress intensity factor

β st :

Normalised stress intensity factor for stiffened panel

β us :

Normalised stress intensity factor for un-stiffened panel

υ :

Poisson’s ratio

σ :

Nominal stress, MPa

C.F.:

Correction factor

FC:

Fatigue crack growth life

II:

Inspection interval

SF:

Scatter factor

SIF:

Stress intensity factor

References

  1. de Morais AB (2007) Calculation of stress intensity factors by the force method. Eng Fract Mech 74:739–750

    Article  Google Scholar 

  2. Srivastava AK, Lal A (2013) Determination of fracture parameters for multiple edge cracks of a finite plate. J Aircr 50(3):901–910

    Article  Google Scholar 

  3. Srivastava AK, Lal A (2014) Dynamic simulation of multiple offset edge crack of a finite plate by the extended finite element method. J Aircr 51(3):849–860

    Article  Google Scholar 

  4. Bombardier Y, Liao M (2010) A new stress intensity factor solution for cracks at an offset loaded fastener hole. 51st AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference, pp. 1–18

  5. Wang Q, Zhang X (1999) A closed form solution about stress intensity factors of shear modes for 2D finite bodies with eccentric cracks by the energy release rate method. Int J Solids Struct 36:971–998

    Article  Google Scholar 

  6. Skorupa M, Machniewicz T, Schijve J, Skorupa A (2007) Application of the strip-yield model from the NASGRO software to predict fatigue crack growth in aluminium alloys under constant and variable amplitude loading. Eng Fract Mech 74:291–313

    Article  Google Scholar 

  7. Srivastava AK (2016) Numerical estimation of flight cycle and repeat inspection interval. J Aircr 53(3):790–799

    Article  Google Scholar 

  8. Kamaya M (2008) Growth evaluation of multiple interacting surface cracks Part I: experiments and simulation of coalesced crack. Eng Fract Mech 75:1336–1349

    Article  Google Scholar 

  9. Jones R, Molent L, Walker K (2012) Fatigue crack growth in a diverse range of materials. Int J Fatigue 40:43–50

    Article  Google Scholar 

  10. Ergun E, Tasgetiren S, Muzaffer T (2010) Fatigue and fracture analysis of aluminum plate with composite patches under the hygrothermal effect. Compos Struct 92(2622):2631

    Google Scholar 

  11. Chen CD, Liu CI, Chen JM, Yu A, Hsu HT (2008) The effects of material variations on aircraft inspection schedules based on stochastic crack growth model. Int J Fatigue 30:861–869

    Article  Google Scholar 

  12. Paris PC, Gomez MP, Anderson WP (1961) A rational analytic theory of fatigue. Trend Eng 13:9–14

    Google Scholar 

  13. Harter James A (1994) AFGROW user’s manual Version 1.2 Technical Memorandum. AFWAL-TM-88–157-FIBE, flight dynamics laboratory, Wright-Patterson air force base Ohio.

  14. Forman RG, Hearney VE, Engle RM (1967) Numerical Analysis of Crack Propagation in Cyclic-Loaded Structures. J Basic Eng 89:459–463

    Article  Google Scholar 

  15. Skorupa M, Machniewicz T, Schijve J, Skorupa A (2007) Application of the strip-yield model from the NASGRO software to predict fatigue crack growth in aluminium alloys. Eng Fract Mech 74(3):291–313

    Article  Google Scholar 

  16. Maierhofer J, Pippan R, Gänser HP (2014) “Modified NASGRO equation for physically short cracks. Int J Fatigue 59:200–207

    Article  Google Scholar 

  17. Yang JN, Donath RC (1983) Statistical fatigue crack propagation in fastener holes under spectrum loading. J Aircr 20(12):1028–1032

    Article  Google Scholar 

  18. Paris PC, Sig GC (1965) Stress Analysis of Cracks. Am Soc Testing Mater 391:30–81

    Google Scholar 

  19. Jiang S, Wei Z, He J, Wang Z (2016) Comparative study between crack closure modeland Willenborg model for fatigue prediction underoverload effects. Chin J Aeronaut 29(6):1618–1625

    Article  Google Scholar 

  20. Hibbitt, Karlsson and Sorensen (2011) ABAQUS user’s manual. Version 6.10

  21. Irwin GR (1960) Fracture mechanics in structural mechanics. In: Goodier JN, Hoff NJ (eds). Proceedings of the 1st symposium on naval structural mechanics. Pergamon Press, New York, pp. 557–591

  22. Chen C-D, Liu C-I, Chen J-M, Armstrong Yu, Hsu H-T (2008) The effects of material variations on aircraft inspection schedules based on stochastic crack growth model. Int J Fatigue 30:861–869

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Kumar Srivastava.

Additional information

Technical Editor: João Marciano Laredo dos Reis.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, A.K., Arora, P.K. Influence of stiffener on fracture parameter and fatigue crack growth life of a finite aluminium alloy plate. J Braz. Soc. Mech. Sci. Eng. 43, 251 (2021). https://doi.org/10.1007/s40430-021-02968-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-021-02968-9

Keywords

Navigation