Skip to main content
Log in

Time-Optimized Hydrothermal Synthesis of Nano-WO3 for Application as Counter Electrode in Dye-Sensitized Solar Cell

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Developing a non-platinum (Pt) counter electrode (CE) in dye-sensitized solar cells (DSSCs) gained widespread consideration in scientific research. The counter electrode substitutes for Pt should exhibit enhanced conductivity and electrocatalytic nature. In the current work, tungsten trioxide (WO3) has been employed as CE in DSSC considering its wide bandgap and n-type property to replace the expensive Pt catalyst for triiodide reduction. Nano-tungsten trioxide (WO3) was synthesized using sodium tungstate dihydrate (Na2WO4∙2H2O) and sodium chloride (NaCl) in an acidic media by a time-optimized hydrothermal route in an autoclave at 200 °C. Physical characterizations of Nano-WO3 were investigated using FESEM, EDS, FTIR spectroscopy and XRD. The impedance and Tafel polarization curve studies suggest that WO3 synthesized after 5 h exhibits lower interfacial charge transfer resistance (Rct) and higher exchange current density (Jo) which confirms better activity of the same compared to others. The DSSC assembled with WO3 as CE gives a short-circuit current density (Jsc) of 17.01 mA cm−2, open-circuit voltage (Voc) of 0.69 V and, a power conversion efficiency (η) of 5.13%. The results suggest that Nano-WO3 can be considered as a potential candidate to substitute platinum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gratzel, M.: Photoelectrochemical cells. Nature 414, 338–344 (2001). https://doi.org/10.1038/35104607

    Article  Google Scholar 

  2. Ye, M.; Wen, X.; Wang, M.; Iocozzia, J.; Zhang, N.; Lin, C.; Lin, Z.: Recent advances in dye-sensitized solar cells: from photoanodes, sensitizers and electrolytes to counter electrodes. Mater. Today. 18, 155–162 (2015). https://doi.org/10.1016/j.mattod.2014.09.001

    Article  Google Scholar 

  3. O’Regan, B.; Gratzel, M.: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991). https://doi.org/10.1038/353737a0

    Article  Google Scholar 

  4. Jeong, I.; Lee, J.; Joseph, K.L.V.; Lee, H.I.; Kim, J.K.; Yoon, S.; Lee, J.: Low-cost electrospun WC/C composite nanofiber as a powerful platinum-free counter electrode for dye sensitized solar cell. Nano Energy 9, 392–400 (2014). https://doi.org/10.1016/j.nanoen.2014.08.010

    Article  Google Scholar 

  5. Xu, H.; Zhang, X.; Zhang, C.; Liu, Z.; Zhou, X.; Pang, S.; Chen, X.; Dong, S.; Zhang, Z.; Zhang, L.; Han, P.; Wang, X.; Cui, G.: Nanostructured titanium nitride/PEDOT: PSS composite films as counter electrodes of dye-sensitized solar cells. ACS Appl. Mater. Interfaces 4, 1087–1092 (2012). https://doi.org/10.1021/am201720p

    Article  Google Scholar 

  6. Saranya, K.; Rameez, M.; Subramania, A.: Developments in conducting polymer-based counter electrodes for dye-sensitized solar cells—an overview. Eur. Polym. J. 66, 207–227 (2015). https://doi.org/10.1016/j.eurpolymj.2015.01.049

    Article  Google Scholar 

  7. Gong, F., Wang, H., Xu, X., Zhou, G., Wang, Z.S.: In situ growth of Co 0.85Se and Ni 0.85Se on conductive substrates as high-performance counter electrodes for dye-sensitized solar cells. J. Am. Chem. Soc. 134, 10953–10958 (2012). https://doi.org/10.1021/ja303034w

  8. Ahmad, S.; Yum, J.H.; Butt, H.J.; Nazeeruddin, M.K.; Grätzel, M.: Efficient platinum-free counter electrodes for dye-sensitized solar cell applications. Chem. Phys. Chem. 11, 2814–2819 (2010). https://doi.org/10.1002/cphc.201000612

    Article  Google Scholar 

  9. Bora, C.; Sarkar, C.; Mohan, K.J.; Dolui, S.: Polythiophene/graphene composite as a highly efficient platinum-free counter electrode in dye-sensitized solar cells. Electrochim. Acta. 157, 225–231 (2015). https://doi.org/10.1016/j.electacta.2014.12.164

    Article  Google Scholar 

  10. Trancik, J.E.; Barton, S.C.; Hone, J.: Transparent and catalytic carbon nanotube films. Nano Lett. 8, 982–987 (2008). https://doi.org/10.1021/nl071945i

    Article  Google Scholar 

  11. Li, G.R.; Wang, F.; Jiang, Q.W.; Gao, X.P.; Shen, P.W.: Carbon nanotubes with titanium nitride as a low-cost counter electrode material for dye-sensitized solar cells. Angew. Chem. Int. Ed. 49, 3653–3656 (2010). https://doi.org/10.1002/anie.201000659

    Article  Google Scholar 

  12. Rajeev, P.V.; Gnanasekar, S.; Gothandapani, K.; Sonar, P.; Chandar, N.K.; Kwan, S.: Thermal decomposition derived nano molybdenum nitride for robust counter electrode in dye-sensitized solar cells. Mater. Today Commun. (2021). https://doi.org/10.1016/j.mtcomm.2021.102070

    Article  Google Scholar 

  13. Sun, H.; Qin, D.; Huang, S.; Guo, X.; Li, D.; Luo, Y.; Meng, Q.: Dye-sensitized solar cells with NiS counter electrodes electrodeposited by a potential reversal technique. Energy Environ. Sci. 4, 2630–2637 (2011). https://doi.org/10.1039/c0ee00791a

    Article  Google Scholar 

  14. Subalakshmi, K.; Kumar, K.A.; Prayer, O.; Saraswathy, S.; Pandurangan, A.: Platinum-free metal sulfide counter electrodes for DSSC applications: structural, electrochemical and power conversion efficiency analyses. Sol. Energy 193, 507–518 (2019). https://doi.org/10.1016/j.solener.2019.09.075

    Article  Google Scholar 

  15. Wu, M.; Lin, X.; Hagfeldt, A.; Ma, T.: A novel catalyst of WO2 nanorod for the counter electrode of dye-sensitized solar cells. Chem. Commun. 47, 4535–4537 (2011). https://doi.org/10.1039/c1cc10638d

    Article  Google Scholar 

  16. Cells, D.S.; Wu, M.; Lin, X.; Hagfeldt, A.; Ma, T.: Low-cost molybdenum carbide and tungsten carbide counter electrodes for dye-sensitized solar cells. Angew. Chem. Int. Ed. Engl. 50, 3520–3524 (2011). https://doi.org/10.1002/anie.201006635

    Article  Google Scholar 

  17. Pringle, J.M.; Armel, V.; MacFarlane, D.R.: Electrodeposited PEDOT-on-plastic cathodes for dye-sensitized solar cells. Chem. Commun. 46, 5367–5369 (2010). https://doi.org/10.1039/c0cc01400a

    Article  Google Scholar 

  18. Reddy, A.C.K.; Susmitha, M.G.K.; Narayana, M.R.; Venkata, T.Y.P.: A novel PEDOT : PSS / SWCNH bilayer thin film counter electrode for efficient dye sensitized solar cells. J. Mater. Sci. Mater. Electron. 31, 4752–4760 (2020). https://doi.org/10.1007/s10854-020-03032-3

    Article  Google Scholar 

  19. Yue, G.; Cheng, R.; Gao, X.; Fan, L.; Mao, Y.; Gao, Y.; Tan, F.: Synthesis of MoIn2S4 @ CNTs composite counter electrode for dye-sensitized solar cells. Nanoscale Res Lett. 15, 179 (2020). https://doi.org/10.1186/s11671-020-03410-0

    Article  Google Scholar 

  20. Yue, G.; Wu, J.; Xiao, Y.; Huang, M.; Lin, J.; Fan, L.; Lan, Z.: Platinum/graphene hybrid film as a counter electrode for dye-sensitized solar cells. Electrochim. Acta. 92, 64–70 (2013). https://doi.org/10.1016/j.electacta.2012.11.020

    Article  Google Scholar 

  21. Wu, M.; Wang, Y.; Lin, X.; Yu, N.; Wang, L.; Wang, L.: Economical and effective sulfide catalysts for dye-sensitized solar cells as counter electrodes. Phys. Chem. Chem. Phys. 13, 19298–19301 (2011). https://doi.org/10.1039/c1cp22819f

    Article  Google Scholar 

  22. Vijayakumar, P.; Pandian, M.S.; Mukhopadhyay, S.; Ramasamy, P.: Synthesis and characterizations of large surface tungsten oxide nanoparticles as a novel counter electrode for dye-sensitized solar cell. J. Sol Gel Sci. Technol. 75, 487–494 (2015). https://doi.org/10.1007/s10971-015-3719-z

    Article  Google Scholar 

  23. Ha, J.H.; Muralidharan, P.; Kim, D.K.: Hydrothermal synthesis and characterization of self-assembled h-WO3 nanowires/nanorods using EDTA salts. J. Alloys Compd. 475, 446–451 (2009). https://doi.org/10.1016/j.jallcom.2008.07.048

    Article  Google Scholar 

  24. Abdullah, S.F.; Radiman, S.; Abd. Hamid, M.A.; Ibrahim, N.B.: Effect of calcination temperature on the surface morphology and crystallinity of tungsten (VI) oxide nanorods prepared using colloidal gas aphrons method. Colloids Surf. A Physicochem. Eng. Asp. 280, 88–94 (2006). https://doi.org/10.1016/j.colsurfa.2006.01.042.

  25. Rajagopal, S.; Nataraj, D.; Mangalaraj, D.; Djaoued, Y.; Robichaud, J.; Khyzhun, O.Y.: Controlled growth of WO3 nanostructures with three different morphologies and their structural, optical, and photodecomposition studies. Nanoscale Res. Lett. 4, 1335–1342 (2009). https://doi.org/10.1007/s11671-009-9402-y

    Article  Google Scholar 

  26. Zhang, J.; Tu, J.P.; Xia, X.H.; Wang, X.L.; Gu, C.D.: Hydrothermally synthesized WO3 nanowire arrays with highly improved electrochromic performance. J. Mater. Chem. 21, 5492–5498 (2011). https://doi.org/10.1039/c0jm04361c

    Article  Google Scholar 

  27. Zheng, F.; Zhang, M.; Guo, M.: Controllable preparation of WO3 nanorod arrays by hydrothermal method. Thin Solid Films 534, 45–53 (2013). https://doi.org/10.1016/j.tsf.2013.01.102

    Article  Google Scholar 

  28. Hassani, H.; Marzbanrad, E.; Zamani, C.; Raissi, B.: Effect of hydrothermal duration on synthesis of WO3 nanorods. J. Mater. Sci. Mater. Electron. 22, 1264–1268 (2011). https://doi.org/10.1007/s10854-011-0297-x

    Article  Google Scholar 

  29. Amano, F.; Tian, M.; Wu, G.; Ohtani, B.; Chen, A.: Facile preparation of platelike tungsten oxide thin film electrodes with high photoelectrode activity. ACS Appl. Mater. Interfaces. 3, 4047–4052 (2011). https://doi.org/10.1021/am200897n

    Article  Google Scholar 

  30. Rashid, A.A.; Nor Hayati, S.; Bien, C.S.D.; Lee, W.Y.; Muhammad, A.S.: Preliminary study of WO3 nanostructures produced via facile hydrothermal synthesis process for CO2 sensing. Appl. Mech. Mater. 431, 37–41 (2013). https://doi.org/10.4028/www.scientific.net/AMM.431.37.

  31. Su, J.; Feng, X.; Sloppy, J.D.; Guo, L.; Grimes, C.A.: Vertically aligned WO3 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis and photoelectrochemical properties. Nano Lett. 11, 203–208 (2011). https://doi.org/10.1021/nl1034573

    Article  Google Scholar 

  32. Song, D.; Chen, Z.; Cui, P.; Li, M.; Zhao, X.; Li, Y.; Chu, L.: NH3-treated WO3 as low-cost and efficient counter electrode for dye-sensitized solar cells. Nanoscale Res. Lett. 10, 0–5 (2015). https://doi.org/10.1186/s11671-014-0708-z

    Article  Google Scholar 

  33. Uppachai, P.; Harnchana, V.; Pimanpang, S.; Amornkitbamrung, V.; Brown, A.P.; Brydson, R.M.D.: A substoichiometric tungsten oxide catalyst provides a sustainable and efficient counter electrode for dye-sensitized solar cells. Electrochim. Acta. 145, 27–33 (2014). https://doi.org/10.1016/j.electacta.2014.08.096

    Article  Google Scholar 

  34. Elbohy, H.; Reza, K.M.; Gamall, E.; Abdulkarim, S.; Gurung, A.; Varnekar, G.: Urea treated WO3 and SnO2 as cost-effective and efficient counter electrodes of dye sensitized solar cells. In: EEE International Conference on Electro Information Technology (EIT), Grand Forks, ND, pp. 0477–0481 (2016). https://doi.org/10.1109/EIT.2016.7535287.

  35. Cui, W.; Ma, J.; Wu, K.; Chen, J.; Wu, M.: The preparation and performance of WO3@C as a counter electrode catalyst for dye-sensitized solar cell. Int. J. Electrochem. Sci. 12, 11487–11495 (2017). https://doi.org/10.20964/2017.12.72

    Article  Google Scholar 

  36. Santhosh, N.; Govindaraj, R.; Senthil Pandian, M; Ramasamy, P.; Mukhopadhyay, S.: Mesoporous TiO2 microspheres synthesized via a facile hydrothermal method for dye sensitized solar cell applications. J. Porous Mater. 23, 1483–1487 (2016). https://doi.org/10.1007/s10934-016-0208-x.

  37. Periasamy, P.; Krishnakumar, T.; Sathish, M.; Chavali, M.; Siril, P.F.; Devarajan, V.P.: Structural and electrochemical studies of tungsten oxide (WO3) nanostructures prepared by microwave assisted wet-chemical technique for supercapacitor. J. Mater. Sci. Mater. Electron. 29, 6157–6166 (2018). https://doi.org/10.1007/s10854-018-8590-6

    Article  Google Scholar 

  38. Gong, F.; Xu, X.; Zhou, G.; Wang, Z.S.: Enhanced charge transportation in a polypyrrole counter electrode via incorporation of reduced graphene oxide sheets for dye-sensitized solar cells. Phys. Chem. Chem. Phys. 15, 546–552 (2013). https://doi.org/10.1039/c2cp42790g

    Article  Google Scholar 

  39. Wang, Q.; Moser, J.E.; Grätzel, M.: Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells. J. Phys. Chem. B. 109, 14945–14953 (2005). https://doi.org/10.1021/jp052768h

    Article  Google Scholar 

  40. Mutta, G.R.; Popuri, S.R.; Maciejczyk, M.; Robertson, N.; Vasundhara, M.; Wilson, J.I.B.; Bennett, N.S.: V2O5 as an inexpensive counter electrode for dye sensitized solar cells. Mater. Res. Express. 3, 035501 (2016). https://doi.org/10.1088/2053-1591/3/3/035501

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haribabu Krishnan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asok, A., Krishnan, H. Time-Optimized Hydrothermal Synthesis of Nano-WO3 for Application as Counter Electrode in Dye-Sensitized Solar Cell. Arab J Sci Eng 48, 15769–15776 (2023). https://doi.org/10.1007/s13369-021-05556-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05556-0

Keywords

Navigation