Skip to main content
Log in

Synthesis, Characterization, DNA Binding, Cleavage, Antibacterial, In vitro Anticancer and Molecular Docking Studies of Ni(II), Cu(II) and Zn(II) Complexes of 3,4,5-Trimethoxy-N-(3-Hydroxy-5-(Hydroxymethyl)-2-Methylpyridin-4-yl)methylene)Benzohydrazide

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The Schiff base ligand (L), 3,4,5-Trimethoxy-N-((3-hydroxy-5-(hydroxymethyl)-2-methylpyridin-4-yl)methylene)benzohydrazide (PLTMBH) was prepared by condensation of pyridoxal and 3,4,5-Trimethoxybenzohydrazide. The metal complexes of the ligand with Ni(II), Cu(II) and Zn(II) ions (M) were synthesized. The complexes were characterized by various spectroscopic IR, 1H-NMR, UV, LC–MS and ESR studies and analytical methods as elemental analysis, thermal analysis, molar conductance and magnetic susceptibility measurements. Based on the results, the complexes were assigned distorted octahedral geometry with a metal-to-ligand ratio, 1:2 (ML2). The interaction of the metal complexes with calf thymus (CT) DNA was investigated by electronic absorption and fluorescence emission spectra, viscosity measurements and molecular docking studies. The electronic and fluorescence spectra indicated that the metal complexes can bind to DNA with binding constant (Kb) of 0.819 × 104, 1.014 × 104and 0.427 × 104 M−1 for Ni(II), Cu(II) and Zn(II) complexes, respectively. The viscosity studies suggested groove mode of binding of the complexes with CT DNA. The docking studies of metal complexes with DNA were performed to assess possible mode of interaction, which also supported groove mode of binding for all the complexes. The complexes also showed significant cleavage ability of plasmid pBR322 DNA. The metal complexes showed good antibacterial activity, while the ligand showed moderate activity. The in vitro anticancer assay for the Ni(II) and Cu(II) complexes was performed by standard MTT assay method, against HeLa-Human cervical carcinoma cells, MCF-7-Human breast carcinoma cells and A549-Human lung carcinoma cells. The study indicated appreciable anticancer activity of the complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Katyal, M.; Dutt, Y.: Analytical applications of hydrazones. Talanta 22, 151–166 (1975)

    Article  Google Scholar 

  2. Mohan, M.; Gupta, M.P.; Chandra, L.; Jha, N.K.: Synthesis, characterization and antitumour properties of some metal(II) complexes of 2-pyridinecarboxaldehyde 2′-pyridylhydrazone and related compounds. Inorg. Chim. Acta. 151, 61–68 (1988)

    Article  Google Scholar 

  3. Singh, R.B.; Jain, P.; Singh, R.P.: Hydrazones as analytical reagents: a review. Talanta 29, 77–84 (1982)

    Article  Google Scholar 

  4. El-Sonabati, A.Z.; Gehad, W.H.M.; Mohamed, G.; Diab, M.A.; Morgan, Sh.M.; Abbas, S.Y.: Synthesis, characterization of Schiff base metal complexes and their biological investigation. Appl. Organomet. Chem. 33(9), e5048 (2019)

    Article  Google Scholar 

  5. Hosny, N.M.; Mahmoud, H.M.; Abdel-Rhman, M.H.: Spectral, optical, and cytotoxicity studies on N-(2-isonicotinoylhydrazine-carbonothioyl) benzamide and its metal complexes. Heteroatom. Chem. (2018). https://doi.org/10.1002/hc.21415

    Article  Google Scholar 

  6. Hosny, N.M.; Mahmoud, H.M.; Abdel-Rhman, M.H.: Synthesis, spectral, modeling, docking and cytotoxicity studies on 2-(2-aminobenzoyl)-N-ethylhydrazine-1-carbothioamide and its divalent metal complexes. Appl. Organomet. Chem. (2020). https://doi.org/10.1002/aoc.5922

    Article  Google Scholar 

  7. Hosny, N.M.; Mahmoud, H.M.; Abdel-Rhman, M.H.: Synthesis, characterization and cytotoxicity of new 2-isonicotinoyl-N-phenylhydrazine-1-carbothioamide and its metal complexes. Appl. Organomet. Chem. (2019). https://doi.org/10.1002/aoc.4998

    Article  Google Scholar 

  8. Wu, Z.; Liu, Q.; Liang, X.; Yang, X.; Wang, N.; Wang, X.; Sun, H.; Lu, Y.; Guo, Z.: Reactivity of platinum-based antitumor drugs towards a Met- and His-rich 20mer peptide corresponding to the N-terminal domain of human copper transporter 1. J. Biol. Inorg. Chem. 14, 1313 (2009)

    Article  Google Scholar 

  9. Richardson, D.R.; Milnes, K.: The potential of iron chelators of the pyridoxal isonicotinoyl hydrazone class as effective antiproliferative agents II: the mechanism of action of ligands derived from salicylaldehyde benzoyl hydrazone and 2-hydroxy-1-naphthylaldehyde benzoyl hydrazone. Blood 89(8), 3025–3038 (1997)

    Article  Google Scholar 

  10. Van Reyk, D.M.; Sarel, S.; Hunt, N.H.: In vitro effects of three iron chelators on mitogen-activated lymphocytes: identification of differences in their mechanisms of action. Int. J. Immunopharmacol 14(5), 925–932 (1992)

    Article  Google Scholar 

  11. Richardson, D.; Ponka, P.; Baker, E.: The effect of the iron(III) chelator, desferrioxamine, on Iron and transferrin uptake by the human malignant melanoma cell. Cancer Res. 54(3), 685–689 (1994)

    Google Scholar 

  12. Sah, P.P.T.: Nicotinyl and isonicotinyl hydrazones of pyridoxal. J. Am. Chem. Soc. 76(1), 300 (1954). https://doi.org/10.1021/ja01630a096

    Article  Google Scholar 

  13. Iheanacho, E.N.; Avramovici-Grisaru, S.: Fe (II)-chelates based on redox-active pyridoxal-betaines as C-centered radicals causing single- and double-strand scissions to DNA. Free Radic. Res. Commun. 11, 307–315 (1991)

    Article  Google Scholar 

  14. Cabantchic, Z.I.; Glickstein, H.; Golenser, J.; Loyevsky, M.; Tsafack, A.: Iron chelators: mode of action as antimalarials. Acta Haematol 95, 70–77 (1996). https://doi.org/10.1159/000203952

    Article  Google Scholar 

  15. Lippert B., Cisplatin: Chemistry and biochemistry of a leading anticancer drug, Wiley Inter-science, (1999).

  16. Ozden, T.; Fatma, G.; Leyla, A.; Betul, A.: Synthesis, characterization and DNA binding studies of platinum(II) complexes with benzimidazole derivative ligands. Bioorg. Chem. 74, 272–283 (2017)

    Article  Google Scholar 

  17. Allardyce, C.S.; Dyson, P.J.: Ruthenium in medicine: current clinical uses and future prospects. Platinum Met. Rev. 45(2), 62–69 (2001)

    Google Scholar 

  18. Ott, I.; Gust, R.: Non platinum metal complexes as anti-cancer drugs. Arch. Pharm. Chem. Life 340, 117–126 (2007)

    Article  Google Scholar 

  19. Nahid, S.; Maryam, M.; Avat, T.; Fatemeh, G.: Synthesis, characterization and in vitro DNA binding studies of a new copper(II) complex containing antioxidant ferulic acid. J. Coord. Chem. 70(15), 2589–2605 (2017). https://doi.org/10.1080/00958972.2017.1363890

    Article  Google Scholar 

  20. Hartinger, C.G.; Dyson, P.: Bioorganometallic chemistry - from teaching paradigms to medicinal applications. Chem. Soc. Rev. 38, 391–401 (2009)

    Article  Google Scholar 

  21. Ferrari, M.B.; Biscegliea, F.; Favva, G.G.; Pelosia, G.; Tarasconi, P.; Albertini, R.; Pinelli, S.: Synthesis, characterization and biological activity of two new polymeric copper(II) complexes with α-ketoglutaric acid thiosemicarbazone. J. Inorg. Biochem. 89, 36–44 (2002)

    Article  Google Scholar 

  22. Arguelles, M.R.; Ferrari, M.B.; Bisce-gli, F.; Pelizzi, C.; Pelosi, G.; Pinelli, S.; Sassi, M.: Synthesis, characterization and biological activity of Ni, Cu and Zn complexes of isatin hydrazones. J. Inorg. Biochem. 98(2), 313–321 (2004)

    Article  Google Scholar 

  23. Ferrari, M.B.; Biscegliea, F.; Buschini, A.; Franzoni, S.; Pelosia, G.; Pinelli, S.; Tarasconi, P.; Tavone, M.: Synthesis, structural characterization and antiproliferative and toxic bio-activities of copper(II) and nickel(II) citronellal N4-ethylmorpholine thiosemicarbazonates. J. Inorg. Biochem. 104, 199–206 (2010)

    Article  Google Scholar 

  24. Sharma, R.; Agarwal, S.K.; Rawat, S.; Nagar, M.: Synthesis, characterization and antibacterial activity of some transition metal cis-3,7-dimethyl-2,6-octadiensemicarbazone complexes. Transit. Met. Chem. 31, 201–206 (2006)

    Article  Google Scholar 

  25. Kavitha, R.; Sireesha, B.; Venkata Ramana Reddy, Ch.: Synthesis, characterisation and antibacterial activity of benzohydrazones derived from 3-hydroxy-5-hydroxymethyl-2-methylpyridine-4-carboxaldehyde. Heterocycl. Lett. 6, 741–747 (2016)

    Google Scholar 

  26. Raman, N.; Pothiraj, K.; Baskaran, T.: DNA interaction, antimicrobial, electrochemical and spectroscopic studies of metal(II) complexes with tridentate heterocyclic Schiff base derived from 2′-methylacetoacetanilide. J. Mol. Struct. 1000(1–3), 135–144 (2011)

    Article  Google Scholar 

  27. Lakowicz, J.R.; Webber, G.: Quenching of fluorescence by oxygen Probe for structural fluctuations in macromolecules. Biochemistry 12(12), 4161–4170 (1973)

    Article  Google Scholar 

  28. Balouiri, M.; Sadiki, M.; Ibnsouda, S.K.: Methods for in vitro evaluating antimicrobial activity: a review. J. Pharm. Anal. 6(2), 71–79 (2016)

    Article  Google Scholar 

  29. Mosmann, T.: Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55–63 (1983)

    Article  Google Scholar 

  30. Hetenyi, C.; Spoel, D.V.: Efficient docking of peptides to proteins without prior knowledge of the binding site. Protein Sci. 11(7), 1729–1737 (2002)

    Article  Google Scholar 

  31. Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J.: AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem. 30(16), 2785–2791 (2009). https://doi.org/10.1002/jcc.21256

    Article  Google Scholar 

  32. Searle, M.S.; Maynard, A.J.; Williams, H.E.: DNA recognition by the anthracycline antibiotic respinomycin D: NMR structure of the intercalation complex with d(AGACGTCT)2. Org. Biomol. Chem. 1(1), 60–66 (2003)

    Article  Google Scholar 

  33. Leovac, V.M.; Jevtovic, V.S.; Bogdanovic, G.A.: Transition metal complexes with thiosemicarbazide-based ligands. XLIV. Aqua(3-hydroxy-5-hydroxymethyl-2-methylpyridine-4-carboxaldehyde 3-methylisothiosemicarbazone-k3O, N1, N4)nitratocopper(II) nitrate. Acta Cryst. C58, 514–516 (2002). https://doi.org/10.1107/S010827010201586X

    Article  Google Scholar 

  34. Raman, N.; Raja, S.J.; Joseph, J.; Raja, J.D.: Synthesis, spectral characterization and DNA cleavage study of heterocyclic Schiff base metal complexes. J. Chil. Chem. Soc. 52(2), 1138–1141 (2007)

    Article  Google Scholar 

  35. Ferraro, J.R.: Low-frequency vibrations of inorganic and coordination compounds. Plenum, New York (1971)

    Google Scholar 

  36. Nikola, Z.K.; Vukadin, M.L.; Violeta, S.J.; Sanja, G.S.; Tibor, J.S.: Platinum(IV) complex with pyridoxal semicarbazone. Inorg. Chem. Commun. 6, 561–564 (2003)

    Article  Google Scholar 

  37. Lever, A.B.P.: Inorganic electronic spectroscopy, 2nd edn. Elsevier, New York (1984)

    Google Scholar 

  38. Mohanraj, M.; Ayyannan, G.; Raja, G.; Jayabalakrishnan, C.: Evaluation of DNA binding, DNA cleavage, protein binding, radical scavenging and in vitro cytotoxic activities of ruthenium(II) complexes containing 2,4-dihydroxy benzylidene ligands. Mat. Sci. Eng. C-Mater. 69, 1297–1306 (2016)

    Article  Google Scholar 

  39. Jiang, C.W.: Syntheses, characterization and DNA-binding study of chiral complexes ΔΔ- and ΛΛ-[Ru(bpy)2(bdptb)Ru(bpy)2]4+. J. Inorg. Biochem. 98, 497–501 (2004)

    Article  Google Scholar 

  40. Lu, J.; Sun, Q.; Li, J.L.; Gu, W.; Tianab, J.L.; Liuab, X.; Yan, S.P.: Synthesis, characterization, and DNA-binding of two new Cd(II) complexes with 8-[(2-pyridylmethyl)amino]-quinoline. J. Coord. Chem. 66, 3280–3290 (2013)

    Article  Google Scholar 

  41. Mardanya, S.; Karmakar, S.; Mondal, D.; Baitalik, S.: Homo- and heterobimetallic Ruthenium(II) and Osmium(II) complexes based on a Pyrene-Biimidazolate spacer as efficient DNA-binding probes in the near-infrared domain. Inorg. chem. 55, 3475–3489 (2016)

    Article  Google Scholar 

  42. Milutinovic, M.M.; Rilak, A.; Bratsos, I.; Klisuric, O.; Vranes, M.; Gligorijevic, N.; Radulovic, S.; Bugarcic, Z.D.: New 4′-(4-chlorophenyl)-2,2′:6′,2″-terpyridine ruthenium(II) complexes: synthesis, characterization, interaction with DNA/BSA and cytotoxicity studies. J. Inorg. Biochem. 169, 1–12 (2017)

    Article  Google Scholar 

  43. Ju, C.C.; Zhang, A.G.; Yuan, C.L.; Zhao, X.L.; Wang, K.Z.: The interesting DNA-binding properties of three novel dinuclear Ru(II) complexes with varied lengths of flexible bridges. J. Inorg. Biochem. 105, 435–443 (2011)

    Article  Google Scholar 

  44. Zhang, A.G.; Zhang, Y.Z.; Duan, Z.M.; Wang, K.Z.; Wei, H.B.; Bian, Z.Q.; Huang, C.H.: Dual molecular light switches for pH and DNA based on a novel Ru(II) complex. a non-intercalating Ru(II) complex for DNA molecular light switch. Inorg. Chem. 50, 6425–6436 (2011)

    Article  Google Scholar 

  45. Tarui, M.; Doi, M.; Ishida, T.; Inoue, M.; Nakaike, S.; Kitamura, K.: DNA-binding characterization of a novel anti-tumour benzo[a]phenazine derivative NC-182: spectroscopic and viscometric studies. Biochem. J. 304, 271–279 (1994)

    Article  Google Scholar 

  46. Husain, M.A.; Yaseen, Z.; Rehman, S.U.; Sarwar, T.; Tabish, M.: Naproxen intercalates with DNA and causes photocleavage through ROS generation. FEBS. J. 280, 6569–6580 (2013). https://doi.org/10.1111/febs.12558

    Article  Google Scholar 

  47. Li, X.L.; Hu, Y.J.; Wang, H.; Yu, B.Q.; Yue, H.L.: Molecular spectroscopy evidence of Berberine Binding to DNA: comparative binding and thermodynamic profile of intercalation. Biomacromol 13, 873–880 (2012)

    Article  Google Scholar 

  48. Satyanarayana, S.; Dabrowiak, J.C.; Chaires, J.B.: Neither .DELTA.- nor .LAMBDA-tris(phenanthroline)ruthenium(II) binds to DNA by classical intercalation. Biochemistry 31(39), 9319–9324 (1992)

    Article  Google Scholar 

  49. Phadtea, A.A.; Banerjee, S.; Mateb, N.A.; Baneerjee, A.: Spectroscopic and viscometric determination of DNA-binding modes of some bioactive dibenzodioxins and phenazines. Biochem. Biophys. Rep. 18, 100629 (2019)

    Google Scholar 

  50. Tweedy, B.G.: Plant extracts with metal ions as potential antimicrobial agents. Phytopathology 55, 910 (1964)

    Google Scholar 

  51. Akindele, A.J.; Wani, Z.A.; Sharma, S.; Mahajan, G.; Satti, N.K.; Adeyemi, O.O.; Mondhe, D.M.; Saxena, A.K.: In Vitro and In Vivo Anticancer Activity of Root Extracts of Sansevieria liberica Gerome and Labroy (Agavaceae). Evid.-Based Complementary Altern. Med. Article ID 560404 (2015). https://doi.org/10.1155/2015/560404

Download references

Acknowledgements

The authors are thankful to Jawaharlal Nehru Technological University Hyderabad, Hyderabad and Osmania University, Hyderabad, India for providing necessary research facilities to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ch. Venkata Ramana Reddy.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 383 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramdas, K., Reddy, C.V.R. & Sireesha, B. Synthesis, Characterization, DNA Binding, Cleavage, Antibacterial, In vitro Anticancer and Molecular Docking Studies of Ni(II), Cu(II) and Zn(II) Complexes of 3,4,5-Trimethoxy-N-(3-Hydroxy-5-(Hydroxymethyl)-2-Methylpyridin-4-yl)methylene)Benzohydrazide. Arab J Sci Eng 47, 407–418 (2022). https://doi.org/10.1007/s13369-021-05562-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05562-2

Keywords

Navigation