Skip to main content
Log in

Stability of the mean value formula for harmonic functions in Lebesgue spaces

  • Published:
Annali di Matematica Pura ed Applicata (1923 -) Aims and scope Submit manuscript

Abstract

Let D be an open subset of \({\mathbb {R}}^n\) with finite measure, and let \(x_0 \in D\). We introduce the p-Gauss gap of D w.r.t. \(x_0\) to measure how far are the averages over D of the harmonic functions \( u \in L^p(D)\) from \(u(x_0)\). We estimate from below this gap in terms of the ball gap of D w.r.t. \(x_0\), i.e., the normalized Lebesgue measure of \(D \setminus B\), being B the biggest ball centered at \(x_0\) contained in D. From these stability estimates of the mean value formula for harmonic functions in \(L^p\)-spaces, we straightforwardly obtain rigidity properties of the Euclidean balls. We also prove a continuity result of the p-Gauss gap in the Sobolev space \(W^{1,p'}\), where \(p'\) is the conjugate exponent of p.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agostiniani, V., Magnanini, R.: Stability in an overdetermined problem for the Green’s function. Ann. Mat. Pura Appl. 190, 21–31 (2011)

    Article  MathSciNet  Google Scholar 

  2. Aikawa, H.: Integrability of superharmonic functions and subharmonic functions. Proc. Am. Math. Soc. 120, 109–117 (1994)

    Article  MathSciNet  Google Scholar 

  3. Brandolini, B., Nitsch, C., Salani, P., Trombetti, C.: On the stability of the Serrin problem. J. Differ. Equ. 245, 1566–1583 (2008)

    Article  MathSciNet  Google Scholar 

  4. Brasco, L., Cinti, E., Vita, S.: A quantitative stability estimate for the fractional Faber–Krahn inequality. Funct. Anal. 279, 108560 (2020). 49

    Article  MathSciNet  Google Scholar 

  5. Brasco, L., De Philippis, G., Velichkov, B.: Faber–Krahn inequalities in sharp quantitative form. Duke Math. J. 164, 1777–1831 (2015)

    Article  MathSciNet  Google Scholar 

  6. Byun, S., Wang, L.: Elliptic equations with BMO coefficients in Reifenberg domains. Commun. Pure Appl. Math. 57, 1283–1310 (2004)

    Article  MathSciNet  Google Scholar 

  7. Carlen, E., Maggi, F.: Stability for the Brunn–Minkowski and Riesz rearrangement inequalities, with applications to Gaussian concentration and finite range non-local isoperimetry. Canad. J. Math. 69, 1036–1063 (2017)

    Article  MathSciNet  Google Scholar 

  8. Cavalletti, F., Maggi, F., Mondino, A.: Quantitative isoperimetry à la Levy-Gromov. Comm. Pure Appl. Math. 72, 1631–1677 (2019)

    Article  MathSciNet  Google Scholar 

  9. Ciraolo, G., Magnanini, R., Vespri, V.: Hölder stability for Serrin’s overdetermined problem. Ann. Mat. Pura Appl. 195, 1333–1345 (2016)

    Article  MathSciNet  Google Scholar 

  10. Ciraolo, G., Vezzoni, L.: A sharp quantitative version of Alexandrov’s theorem via the method of moving planes. J. Eur. Math. Soc. (JEMS) 20, 261–299 (2018)

    Article  MathSciNet  Google Scholar 

  11. Cupini, G., Fusco, N., Lanconelli, E., Zhong, X.: A sharp stability result for the Gauss mean value formula. J. Anal. Math. (in press)

  12. Cupini, G., Lanconelli, E.: On the harmonic characterization of domains via mean value formulas. Le Matematiche 75, 331–352 (2020)

    MathSciNet  MATH  Google Scholar 

  13. Feldman, W.M.: Stability of Serrin’s problem and dynamic stability of a model for contact angle motion. SIAM J. Math. Anal. 50, 3303–3326 (2018)

    Article  MathSciNet  Google Scholar 

  14. Figalli, A., Jerison, D.: Quantitative stability for the Brunn-Minkowski inequality. Adv. Math. 314, 1–47 (2017)

    Article  MathSciNet  Google Scholar 

  15. Fusco, N., Maggi, F., Pratelli, A.: The sharp quantitative isoperimetric inequality. Ann. Math. 168, 941–980 (2008)

    Article  MathSciNet  Google Scholar 

  16. Goldstein, M., Haussmann, W., Rogge, L.: On the mean value property of harmonic functions and best harmonic \(L^1\)-approximation. Trans. Am. Math. Soc. 352, 505–515 (1988)

    MATH  Google Scholar 

  17. Gustafsson, B., Shapiro, H.S.: What is a quadrature domain?. In: Quadrature Domains and Their Applications, pp 1–25, Oper. Theory Adv. Appl., vol. 156, Birkhäuser, Basel (2005)

  18. Kuran, Ü.: On the mean-value property of harmonic functions. Bull. London Math. Soc. 4, 311–312 (1972)

    Article  MathSciNet  Google Scholar 

  19. Magnanini, R., Poggesi, G.: On the stability for Alexandrov’s soap bubble theorem. J. Anal. Math. 139, 179–205 (2019)

    Article  MathSciNet  Google Scholar 

  20. Magnanini, R., Poggesi, G.: Nearly optimal stability for Serrin’s problem and the soap bubble theorem. Calc. Var. 59, 25 (2020)

    Article  MathSciNet  Google Scholar 

  21. Netuka, I., Veselý, J.: Mean value property and harmonic functions, Classical and modern potential theory and applications (Chateau de Bonas, 1993), pp 359–398, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 430, Kluwer Acad. Publ., Dordrecht (1994)

  22. Rossi, A., Salani, P.: Stability for a strengthened Borell–Brascamp–Lieb inequality. Appl. Anal. 98, 1773–1784 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

G. Cupini is member of Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Cupini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cupini, G., Lanconelli, E. Stability of the mean value formula for harmonic functions in Lebesgue spaces. Annali di Matematica 200, 1149–1174 (2021). https://doi.org/10.1007/s10231-020-01030-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10231-020-01030-0

Keywords

Mathematics Subject Classification

Navigation