Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Goos–Hänchen shift enhancement based on an improved differential evolution algorithm

Not Accessible

Your library or personal account may give you access

Abstract

The Goos–Hänchen (GH) shift is one of the important aspects to evaluate the performance of multilayer surface plasmon resonance (SPR) sensors. However, the conventional SPR sensor design procedure based on the fixed parameter scanning (FPS) method is complex and time-consuming, and makes it difficult to gain the optimized design. In this paper, in order to design the optimal GH-shift-based SPR sensor, an improved differential evolution (IDE) algorithm based on chaos mapping, fitness elimination mechanism, nonlinear scale factor, and cross probability control strategy is proposed. By using such an IDE algorithm, the Ag‐ITO‐TMDCs‐graphene structure can be optimized. By the IDE algorithm, after 9 iterations, the maximum fitness value is obtained in the Ag‐ITO‐${{\rm MoS}_2}$-graphene structure, the maximum GH shift is ${16591}\lambda$, and the sensitivity is ${3.3} \times {{10}^8}\,\lambda /{\rm RIU}$. Compared with the FPS method, the GH shift is increased 192 times, and the sensitivity is increased 25,707.6 times. Compared with the DE algorithm, the number of iterations and the efficiency of the IDE algorithm are enormously improved as well. Such an algorithm provides a new, to the best of our knowledge, approach for designing a multilayer SPR sensor.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Theoretical investigation of an enhanced Goos–Hänchen shift sensor based on a BlueP/TMDC/graphene hybrid

Qizheng Ji, Bin Yan, Lei Han, Jin Wang, Ming Yang, and Chuan Wu
Appl. Opt. 59(27) 8355-8361 (2020)

Tunable and enhanced Goos–Hänchen shifts in a monolayer graphene-based metallic grating structure

Ye Hong, Zhengyang Li, Changwei Zhang, and Haixia Da
J. Opt. Soc. Am. B 39(1) 402-407 (2022)

Improved particle swarm optimization algorithm for high performance SPR sensor design

Lei Han, Chaoyu Xu, Tianye Huang, and Xueyan Dang
Appl. Opt. 60(6) 1753-1760 (2021)

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (6)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved