Skip to main content
Log in

Real time UAV path planning by parallel grey wolf optimization with align coefficient on CAN bus

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Unmanned aerial vehicle (UAV) path planning is a complex optimization problem, which aims to achieve an optimal or nearly optimal flight path despite various threats and constraints. In this paper, an improved version of Gray Wolf Optimization (GWO) is proposed to solve the UAV 3D path planning problem which considers the dynamics of the UAV. In improved GWO, a variable weighting called "align coefficient" is defined to deal with the problem of waypoint scattering. The parallel GWO is applied to reduce the computation time which makes the possibility of real-time implementation. Given the existence and unique features of CAN bus in UAVs, it is used as a platform to migrate individuals in the parallelization process. The simulation results demonstrate that applying improved GWO generates better performance for UAV 3D path planning problems compared to the conventional GWO, GA, PSO, SA, improved GA and improved PSO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Zhang, L., Liu, Z., Zhang, Y., Ai, J.: Intelligent Path Planning and Following for UAVs in Forest Surveillance and Fire Fighting Missions*. In: 2018 IEEE CSAA Guidance, Navigation and Control Conference (CGNCC). pp. 1–6 (2018)

  2. Duan, H., Huang, L.: Imperialist competitive algorithm optimized artificial neural networks for UCAV global path planning. Neurocomputing 125, 166–171 (2014). https://doi.org/10.1016/j.neucom.2012.09.039

    Article  Google Scholar 

  3. Konatowski, S., Pawłowski, P.: Ant colony optimization algorithm for UAV path planning. In: 2018 14th International Conference on Advanced Trends in Radioelecrtronics, Telecommunications and Computer Engineering (TCSET). pp. 177–182 (2018)

  4. Tharwat, A., Elhoseny, M., Hassanien, A.E., Gabel, T., Kumar, A.: Intelligent bézier curve-based path planning model using chaotic particle swarm optimization algorithm. Clust. Comput. (2018). https://doi.org/10.1007/s10586-018-2360-3

    Article  Google Scholar 

  5. Shao, S., Peng, Y., He, C., Du, Y.: Efficient path planning for UAV formation via comprehensively improved particle swarm optimization. ISA Trans. 97, 415–430 (2020). https://doi.org/10.1016/j.isatra.2019.08.018

    Article  Google Scholar 

  6. Sonmez, A., Kocyigit, E., Kugu, E.: Optimal path planning for UAVs using Genetic Algorithm. In: 2015 International Conference on Unmanned Aircraft Systems (ICUAS). pp. 50–55 (2015)

  7. Huo, L., Zhu, J., Wu, G., Li, Z.: A novel simulated annealing based strategy for balanced UAV task assignment and path planning. Sensors. 20, 4769 (2020). https://doi.org/10.3390/s20174769

    Article  Google Scholar 

  8. Wang, G.-G., Chu, H.E., Mirjalili, S.: Three-dimensional path planning for UCAV using an improved bat algorithm. Aerosp. Sci. Technol. 49, 231–238 (2016). https://doi.org/10.1016/j.ast.2015.11.040

    Article  Google Scholar 

  9. Wang, G., Guo, L., Duan, H., Liu, L., Wang, H., Shao, M.: Path planning for uninhabited combat aerial vehicle using hybrid meta-heuristic DE/BBO algorithm. Adv. Sci. Eng. Med. 4, 550–564 (2012). https://doi.org/10.1166/asem.2012.1223

    Article  Google Scholar 

  10. Wang, G., Guo, L., Duan, H., Liu, L., Wang, H.: A modified firefly algorithm for UCAV path planning. Int. J. Hybrid Inf. Technol. 123–144 (2012)

  11. Wang, G., Guo, L., Duan, H., Liu, L., Wang, H.: A bat algorithm with mutation for UCAV path planning. https://www.hindawi.com/journals/tswj/2012/418946/

  12. Wang, G.-G., Guo, L., Duan, H., Liu, L., Wang, H., Wang, J.: A hybrid meta-heuristic DE/CS algorithm for UCAV path planning. J. Inf. Comput. Sci. 9, 4811–4818 (2012)

    Google Scholar 

  13. Wang, G.-G., Guo, L., Duan, H., Wang, H., Liu, L., Shao, M.: A hybrid metaheuristic DE/CS algorithm for UCAV three-dimension path planning. Sci. World J. 2012, 583973 (2012). https://doi.org/10.1100/2012/583973

    Article  Google Scholar 

  14. Wu, X., Xu, L., Zhen, R., Wu, X.: Bi-directional adaptive A* algorithm toward optimal path planning for large-scale UAV under multi-constraints. IEEE Access. 8, 85431–85440 (2020). https://doi.org/10.1109/ACCESS.2020.2990153

    Article  Google Scholar 

  15. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014). https://doi.org/10.1016/j.advengsoft.2013.12.007

    Article  Google Scholar 

  16. Mirjalili, S.: How effective is the Grey Wolf optimizer in training multi-layer perceptrons. Appl. Intell. 43, 150–161 (2015). https://doi.org/10.1007/s10489-014-0645-7

    Article  Google Scholar 

  17. Gao, Z.-M., Zhao, J.: An improved grey wolf optimization algorithm with variable weights. Comput. Intell. Neurosci. 2019, 2981282 (2019). https://doi.org/10.1155/2019/2981282

    Article  Google Scholar 

  18. Zhang, S., Zhou, Y., Li, Z., Pan, W.: Grey wolf optimizer for unmanned combat aerial vehicle path planning. Adv. Eng. Softw. 99, 121–136 (2016). https://doi.org/10.1016/j.advengsoft.2016.05.015

    Article  Google Scholar 

  19. Qu, C., Gai, W., Zhang, J., Zhong, M.: A novel hybrid grey wolf optimizer algorithm for unmanned aerial vehicle (UAV) path planning. Knowl. Based Syst. 194, 105530 (2020). https://doi.org/10.1016/j.knosys.2020.105530

    Article  Google Scholar 

  20. Kamboj, V.K.: A novel hybrid PSO–GWO approach for unit commitment problem. Neural Comput. Appl. 27, 1643–1655 (2016). https://doi.org/10.1007/s00521-015-1962-4

    Article  Google Scholar 

  21. Gul, F., Rahiman, W., Alhady, S.S.N., Ali, A., Mir, I., Jalil, A.: Meta-heuristic approach for solving multi-objective path planning for autonomous guided robot using PSO–GWO optimization algorithm with evolutionary programming. J. Ambient Intell. Humaniz. Comput. (2020). https://doi.org/10.1007/s12652-020-02514-w

    Article  Google Scholar 

  22. Dewangan, R.K., Shukla, A., Godfrey, W.W.: Three dimensional path planning using Grey wolf optimizer for UAVs. Appl. Intell. 49, 2201–2217 (2019). https://doi.org/10.1007/s10489-018-1384-y

    Article  Google Scholar 

  23. Xu, C., Xu, M., Yin, C.: Optimized multi-UAV cooperative path planning under the complex confrontation environment. Comput. Commun. 162, 196–203 (2020). https://doi.org/10.1016/j.comcom.2020.04.050

    Article  Google Scholar 

  24. Jamshidi, V., Nekoukar, V., Refan, M.H.: Analysis of parallel genetic algorithm and parallel particle swarm optimization algorithm uav path planning on controller area network. J. Control Autom. Electr. Syst. 31, 129–140 (2020). https://doi.org/10.1007/s40313-019-00549-9

    Article  Google Scholar 

  25. Krishnan, P.S., Tiong, S.K., Koh, J.: Parallel distributed genetic algorithm development based on microcontrollers framework. In: 2008 First International Conference on Distributed Framework and Applications. pp. 35–40 (2008)

  26. Shorakaei, H., Vahdani, M., Imani, B., Gholami, A.: Optimal cooperative path planning of unmanned aerial vehicles by a parallel genetic algorithm. Robotica. 34, 823–836 (2016). https://doi.org/10.1017/S0263574714001878

    Article  Google Scholar 

  27. Roberge, V., Tarbouchi, M., Labonte, G.: Comparison of parallel genetic algorithm and particle swarm optimization for real-time UAV path planning. IEEE Trans. Ind. Inform. 9, 132–141 (2013). https://doi.org/10.1109/TII.2012.2198665

    Article  Google Scholar 

  28. Liu, Y., Zhang, X., Guan, X., Delahaye, D.: Adaptive sensitivity decision based path planning algorithm for unmanned aerial vehicle with improved particle swarm optimization. Aerosp. Sci. Technol. 58, 92–102 (2016). https://doi.org/10.1016/j.ast.2016.08.017

    Article  Google Scholar 

  29. Özalp, N., Sahingoz, O.K.: Optimal UAV path planning in a 3D threat environment by using parallel evolutionary algorithms. In: 2013 International Conference on Unmanned Aircraft Systems (ICUAS). pp. 308–317 (2013)

  30. Li, Y., Eslamiat, H., Wang, N., Zhao, Z., Sanyal, A.K., Qiu, Q.: Autonomous waypoints planning and trajectory generation for multi-rotor UAVs. In: Proceedings of the Workshop on Design Automation for CPS and IoT. pp. 31–40. Association for Computing Machinery, Montreal, Quebec, Canada (2019)

  31. Ataei, M., Yousefi-Koma, A.: Three-dimensional optimal path planning for waypoint guidance of an autonomous underwater vehicle. Robot. Auton. Syst. 67, 23–32 (2015). https://doi.org/10.1016/j.robot.2014.10.007

    Article  Google Scholar 

  32. Anderson, J.D.: Introduction to flight. McGraw-Hill, New York (2012)

    Google Scholar 

  33. Aradi, S., Bécsi, T., Gáspár, P.: Development of vehicle on-board communication system for harsh environment. Acta Tech. Jaurinensis. 6, 53–63 (2013)

    Google Scholar 

  34. Robert Bosch GmbH: CAN Specification Version 2.0, (1991)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahab Nekoukar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamshidi, V., Nekoukar, V. & Refan, M.H. Real time UAV path planning by parallel grey wolf optimization with align coefficient on CAN bus. Cluster Comput 24, 2495–2509 (2021). https://doi.org/10.1007/s10586-021-03276-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-021-03276-6

Keywords

Navigation