Skip to main content
Log in

Electronic correlation effect on nontrivial topological fermions in CoSi

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The present study has been carried out to understand the effect of electronic correlations on the recently found fermions in CoSi. For which the spectral functions of bulk and (001) surface of CoSi have been investigated using DFT + DMFT advanced methodology at T = 100 K with and without inclusion of spin–orbit coupling (SOC). The Co \({d_{xz}}\) + \({d_{yz}}\) and \(d_{z^2}\) bands seem to contribute at threefold degenerate \(\Gamma \) point. On the other hand, fourfold degenerate R point seems to posses maximum of Co \(d_{x^2-y^2} + d_{xy}\) orbitals and minimum of \(d_{xz} + d_{yz}\) orbitals. However, SOC and electronic correlations appear to modify the nature of bands involved at \(\Gamma \) point. DFT + DMFT calculations for the bulk states have shown one extra hole pocket at M point. Incoherent features seem to be possessed by mostly Co \(d_{xz} + d_{yz}\) orbitals in the spectra of bulk CoSi. The existence of both coherent and incoherent features indicates the presence of quasiparticle–quasiparticle (QP–QP) interactions which is eventually affecting the lifetime (\(\tau \)) of exotic fermionic QPs. For instance, the calculated \(\tau \) for QPs at \(\omega \sim \) − 3 and − 186 mev are found to be \(\sim 10^{-9}\) s and \(\sim 10^{-12}\) s, respectively, when SOC is not considered. However, \(G_0W_0\) corrections have shown \(\tau \) for spin-1 fermionic QP at \(\Gamma \) to be infinite while for double Weyl fermionic QP at R point to be \(\sim 10^{-12}\) s. Their effective masses (\(m^*\)) have also been calculated as \(\sim \) 1.60 and 1.64 at \(\Gamma \) and R points, respectively. Furthermore, the spectral functions at T = 100 K of (001) surface have also shown both coherent and incoherent features. Consequently, at \(\omega \) = 0 for surface states, \(\tau \) has been calculated of the order \(\sim 10^{-8}\) s for both without SOC and with SOC inclusions.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Author’s comment: First of all, this is a purely computational work, and all the data (processed) related to this work is already provided in the form of figures and tables within this article. Only raw data are kept with the authors. Because of this, we chose this option of no data/data will not be deposited while submitting the manuscript.]

References

  1. P.B. Pal, Am. J. Phys. 79, 485 (2011)

    Article  ADS  Google Scholar 

  2. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  3. M.Z. Hasan, C.L. Kane, Rev. Mod. Phys. 82, 3045 (2010)

    Article  ADS  Google Scholar 

  4. Y. Ando, J. Phys. Soc. Jpn. 82, 102001 (2013)

    Article  ADS  Google Scholar 

  5. M. Sato, Y. Ando, Rep. Prog. Phys. 80, 076501 (2017)

    Article  ADS  Google Scholar 

  6. V. Mourik, K. Zuo, S.M. Frolov, S.R. Plissard, E.P.A.M. Bakkers, L.P. Kouwenhoven, Science 336, 1003 (2012)

    Article  ADS  Google Scholar 

  7. S.S. Nadj-Perge, I.K. Drozdov, J. Li, H. Chen, S. Jeon, J. Seo, A.H. MacDonald, B.A. Bernevig, A. Yazdani, Science 346, 602 (2014)

    Article  ADS  Google Scholar 

  8. M.T. Deng, S. Vaitiekenas, E.B. Hansen, J. Danon, M. Leijnse, K. Flensberg, J. Nygård, P. Krogstrup, C.M. Marcus, Science 354, 1557 (2016)

    Article  ADS  Google Scholar 

  9. A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, H. Shtrikman, Nat. Phys. 8, 887 (2012)

    Article  Google Scholar 

  10. Z. Wang, Y. Sun, X.-Q. Chen, C. Franchini, G. Xu, H. Weng, X. Dai, Z. Fang, Phys. Rev. B 85, 195320 (2012)

    Article  ADS  Google Scholar 

  11. Z. Wang, H. Weng, Q. Wu, X. Dai, Z. Fang, Phys. Rev. B 88, 125427 (2013)

    Article  ADS  Google Scholar 

  12. M. Neupane, S.-Y. Xu, R. Sankar, N. Alidoust, G. Bian, C. Liu, I. Belopolski, T.-R. Chang, H.-T. Jeng, H. Lin, A. Bansil, F. Chou, M.Z. Hasan, Nat. Commun. 5, 3786 (2014)

    Article  ADS  Google Scholar 

  13. L.X. Yang, Z.K. Liu, Y. Sun, H. Peng, H.F. Yang, T. Zhang, B. Zhou, Y. Zhang, Y.F. Guo, M. Rahn, D. Prabhakaran, Z. Hussain, S.K. Mo, C. Felser, B. Yan, Y.L. Chen, Nat. Phys. 11, 728 (2015)

    Article  Google Scholar 

  14. B.Q. Lv, H.M. Weng, B.B. Fu, X.P. Wang, H. Miao, J. Ma, P. Richard, X.C. Huang, L.X. Zhao, G.F. Chen, Z. Fang, X. Dai, T. Qian, H. Ding, Phys. Rev. X 5, 031013 (2015)

    Google Scholar 

  15. S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C.-C. Lee, S.-M. Huang, H. Zheng, J. Ma, D.S. Sanchez, B. Wang, A. Bansil, F. Chou, P.P. Shibayev, H. Lin, S. Jia, M.Z. Hasan, Science 349, 613 (2015)

    Article  ADS  Google Scholar 

  16. Z.K. Liu, B. Zhou, Y. Zhang, Z.J. Wang, H.M. Weng, D. Prabhakaran, S.-K. Mo, Z.X. Shen, Z. Fang, X. Dai, Z. Hussain, Y.L. Chen, Science 343, 864 (2014)

    Article  ADS  Google Scholar 

  17. S. Souma, Z. Wang, H. Kotaka, T. Sato, K. Nakayama, Y. Tanaka, H. Kimizuka, T. Takahashi, K. Yamauchi, T. Oguchi, K. Segawa, Y. Ando, Phys. Rev. B 93, 161112 (2016)

    Article  ADS  Google Scholar 

  18. S. Borisenko, Q. Gibson, D. Evtushinsky, V. Zabolotnyy, B. Büchner, R.J. Cava, Phys. Rev. Lett. 113, 027603 (2014)

    Article  ADS  Google Scholar 

  19. N.P. Armitage, E.J. Mele, A. Vishwanath, Rev. Mod. Phys. 90, 015001 (2018)

    Article  ADS  Google Scholar 

  20. C. Herring, Phys. Rev. 52, 365 (1937)

    Article  ADS  Google Scholar 

  21. X. Wan, A.M. Turner, A. Vishwanath, S.Y. Savrasov, Phys. Rev. B 83, 205101 (2011)

    Article  ADS  Google Scholar 

  22. B. Bradlyn, J. Cano, Z. Wang, M.G. Vergniory, C. Felser, R.J. Cava, B.A. Bernevig, Science 353, 6299 (2016)

    Article  Google Scholar 

  23. B.J. Wieder, Y. Kim, A.M. Rappe, C.L. Kane, Phys. Rev. Lett. 116, 186402 (2016)

    Article  ADS  Google Scholar 

  24. H. Weng, C. Fang, Z. Fang, X. Dai, Phys. Rev. B 94, 165201 (2016a)

    Article  ADS  Google Scholar 

  25. Z. Zhu, G.W. Winkler, Q. Wu, J. Li, A.A. Soluyanov, Phys. Rev. X 6, 031003 (2016)

    Google Scholar 

  26. H. Weng, C. Fang, Z. Fang, X. Dai, Phys. Rev. B 93, 241202 (2016b)

    Article  ADS  Google Scholar 

  27. B.Q. Lv, Z-L. Feng, Q-N. Xu, X. Gao, J-Z. Ma, L-Y. Kong, P. Richard, Y-B. Huang, V.N. Strocov, C. Fang, H-M. Weng, Y-G. Shi, T. Qian, Nat. Phys. 546, 627 (2017)

  28. P. Tang, Q. Zhou, S.-C. Zhang, Phys. Rev. Lett. 119, 206402 (2017)

    Article  ADS  Google Scholar 

  29. M. Ezawa, Phys. Rev. B 94, 195205 (2016)

    Article  ADS  Google Scholar 

  30. L. Liang, Y. Yu, Phys. Rev. B 93, 045113 (2016)

    Article  ADS  Google Scholar 

  31. R.M. Geilhufe, S.S. Borysov, A. Bouhon, A.V. Balatsky, Sci. Rep. 7, 7298 (2017)

    Article  ADS  Google Scholar 

  32. C. Fang, M.J. Gilbert, X. Dai, B.A. Bernevig, Phys. Rev. Lett. 108, 266802 (2012)

    Article  ADS  Google Scholar 

  33. Y. Xu, L.-M. Duan, Phys. Rev. A 94, 053619 (2016)

    Article  ADS  Google Scholar 

  34. C. Shekhar, Nat. Mater. 17, 953 (2018)

    Article  ADS  Google Scholar 

  35. D.S. Sanchez, I. Belopolski, T.A. Cochran, X. Xu, J.X. Yin, G. Chang, W. Xie, K. Manna, V. Süß, C.Y. Huang, N. Alidoust, D. Multer, S.S. Zhang, N. Shumiya, X. Wang, G.Q. Wang, T.R. Chang, C. Felser, S.Y. Xu, S. Jia, H. Lin, M.Z. Hasan, Nature 567, 500 (2019)

    Article  ADS  Google Scholar 

  36. D. Takane, Z. Wang, S. Souma, K. Nakayama, T. Nakamura, H. Oinuma, Y. Nakata, H. Iwasawa, C. Cacho, T. Kim, K. Horiba, H. Kumigashira, T. Takahashi, Y. Ando, T. Sato, Phys. Rev. Lett. 122, 076402 (2019)

    Article  ADS  Google Scholar 

  37. Z. Rao, H. Li, T. Zhang, S. Tian, C. Li, B. Fu, C. Tang, L. Wang, Z. Li, W. Fan, J. Li, Y. Huang, Z. Liu, Y. Long, C. Fang, H. Weng, Y. Shi, H. Lei, Y. Sun, T. Qian, H. Ding, Nature 567, 496 (2019)

    Article  ADS  Google Scholar 

  38. S. Changdar, S. Aswartham, A. Bose, Y. Kushnirenko, G. Shipunov, N.C. Plumb, M. Shi, A. Narayan, B. Büchner, S. Thirupathaiah, Phys. Rev. B 101, 235105 (2020)

    Article  ADS  Google Scholar 

  39. D.A. Pshenay-Severin, Y.V. Ivanov, A.A. Burkov, A.T. Burkov, J. Phys. Condens. Matter 30, 135501 (2018)

    Article  ADS  Google Scholar 

  40. F. Flicker, F. de Juan, B. Bradlyn, T. Morimoto, M.G. Vergniory, A.G. Grushin, Phys. Rev. B 98, 155145 (2018)

    Article  ADS  Google Scholar 

  41. Z.J. Pan, L.T. Zhang, J.S. Wu, J. Appl. Phys. 101, 033715 (2007)

    Article  ADS  Google Scholar 

  42. A. Sakai, S. Yotsuhashi, H. Adachi, F. Ishii, Y. Onose, Y. Tomioka, N. Nagaosa, Y. Tokura, J. Phys. Soc. Jpn. 76, 093601 (2007)

    Article  ADS  Google Scholar 

  43. F. Ishii, H. Kotaka, T. Onishi, JPS Conf. Proc. 3, 016019 (2014)

    Google Scholar 

  44. V.I. Anisimov, A.I. Poteryaev, M.A. Korotin, A.O. Anokhin, G. Kotliar, J. Phys. Condens. Matter 9, 7359 (1997)

    Article  ADS  Google Scholar 

  45. A.I. Lichtenstein, M.I. Katsnelson, Phys. Rev. B 57, 6884 (1998)

    Article  ADS  Google Scholar 

  46. G. Kotliar, S.Y. Savrasov, K. Haule, V.S. Oudovenko, O. Parcollet, C.A. Marianetti, Rev. Mod. Phys. 78, 865 (2006)

    Article  ADS  Google Scholar 

  47. H.T. Dang, X. Ai, A.J. Millis, C.A. Marianetti, Phys. Rev. B 90, 125114 (2014)

    Article  ADS  Google Scholar 

  48. P. Dutta, S.K. Pandey, J. Phys.: Condens. Matter 31, 145602 (2019)

    ADS  Google Scholar 

  49. A. Sihi, S.K. Pandey, Eur. Phys. J. B 93, 1 (2020)

    Article  ADS  Google Scholar 

  50. V.I. Anisimov, R. Hlubina, M.A. Korotin, V.V. Mazurenko, T.M. Rice, A.O. Shorikov, M. Sigrist, Phys. Rev. Lett. 89, 257203 (2002)

    Article  ADS  Google Scholar 

  51. J. Kuneš, V.I. Anisimov, Phys. Rev. B 78, 033109 (2008)

    Article  ADS  Google Scholar 

  52. M. Imada, A. Fujimori, Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998)

    Article  ADS  Google Scholar 

  53. L. Hedin, Phys. Rev. 139, A796 (1965)

    Article  ADS  Google Scholar 

  54. K. Haule, C.-H. Yee, K. Kim, Phys. Rev. B 81, 195107 (2010)

    Article  ADS  Google Scholar 

  55. P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, J. Luitz, An augmented plane wave + local orbitals program for calculating crystal properties (2001)

  56. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke, Phys. Rev. Lett. 100, 136406 (2008)

    Article  ADS  Google Scholar 

  57. B. Boŕen, A. Kemi, Min. Geol. 11A, 1 (1933)

    Google Scholar 

  58. K. Haule, T. Birol, Phys. Rev. Lett. 115, 256402 (2015)

  59. K. Haule, Phys. Rev. B 75, 155113 (2007)

    Article  ADS  Google Scholar 

  60. K. Haule, Phys. Rev. Lett. 115, 196403 (2015)

    Article  ADS  Google Scholar 

  61. P. Dutta, S. Lal, S.K. Pandey, Eur. Phys. J. B 91, 183 (2018)

    Article  ADS  Google Scholar 

  62. http://hauleweb.rutgers.edu/tutorials/whatis/whatis.html

  63. P. Dutta, S.K. Pandey, Comput. Condens. Matter 16, e00325 (2018)

    Article  Google Scholar 

  64. M. Jarrell, J.E. Gubernatis, Phys. Rep. 269, 133 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  65. D. Pashov, S. Acharya, W.R. Lambrecht, J. Jackson, K.D. Belashchenko, A. Chantis, F. Jamet, M. van Schilfgaarde, Comput. Phys. Commun. 249, 107065 (2020)

    Article  MathSciNet  Google Scholar 

  66. M. Methfessel, M. van Schilfgaarde, R. A. Casali, in Electronic Structure and Physical Properies of Solids, edited by H. Dreyssé (Springer Berlin Heidelberg, Berlin, Heidelberg, 2000) pp. 114–147

  67. T. Kotani, M. van Schilfgaarde, Phys. Rev. B 81, 125117 (2010)

    Article  ADS  Google Scholar 

  68. T. Kotani, M. van Schilfgaarde, S.V. Faleev, Phys. Rev. B 76, 165106 (2007)

    Article  ADS  Google Scholar 

  69. L.D. Landau, E.M. Lifshitz, Quantum Mechanics Non-Relativistic Theory (Butterworth-Heinemann, Kidlington, 1981)

    MATH  Google Scholar 

  70. X. Xu, X. Wang, T.A. Cochran, D.S. Sanchez, G. Chang, I. Belopolski, G. Wang, Y. Liu, H.-J. Tien, X. Gui, W. Xie, M.Z. Hasan, T.-R. Chang, S. Jia, Phys. Rev. B 100, 045104 (2019)

    Article  ADS  Google Scholar 

  71. B. Yan, C. Felser, Annu. Rev. Condens. Matter Phys. 8, 337 (2017)

    Article  ADS  Google Scholar 

  72. H. Zheng, M.Z. Hasan, Adv. Phys. X 3, 1466661 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SKP is solely responsible for the problem formulation and direction. PD has performed the numerical simulations. Under the guidance of SKP, PD has analyzed the data and wrote the manuscript.

Corresponding author

Correspondence to Paromita Dutta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutta, P., Pandey, S.K. Electronic correlation effect on nontrivial topological fermions in CoSi. Eur. Phys. J. B 94, 81 (2021). https://doi.org/10.1140/epjb/s10051-021-00091-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-021-00091-1

Navigation