Skip to main content
Log in

Strong decays with the boost-corrected wave functions

  • Regular Article –Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Strong decay probabilities are calculated using the Lorentz contracted wave functions of decay products, determined in the arbitrary dynamical scheme with the instantaneous interaction. It is shown that the decay width acquires an additional factor, defined by the contraction coefficient \(C_m(s)\), which for the two-body equal mass decays is \(C^2_m(s)= 4m^2/s\) , \(s= E^2\). The resulting decay widths are compared to experimental data, where, in particular the \(\rho (770),\rho (1450) \) decay data, require an additional 1/s dependence of the width to fit the data. Important consequences for the dynamics of hadron decays and scattering are shortly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The numerical analysis of the experimental data on the \(\rho \) and \( \rho '\) decays was repeatedly and carefully done in [47,48,49] and discussed in detail in PDG [45] with the result that the energy dependence of decay probability is given by eq (14).Therefore for the present paper it is left only to derive eq (14) theoretically, which is actually done using Lorentz contraction and relativistic string decay theory.]

References

  1. P.A.M. Dirac, Rev. Mod. Phys. 21, 392 (1949)

    Article  ADS  Google Scholar 

  2. T.D. Newton, E.P. Wigner, Rev. Mod. Phys. 21, 400 (1949)

    Article  ADS  Google Scholar 

  3. B.D. Keister, W. Polyzou, Adv. Nucl. Phys. 20, 225 (1991)

    Google Scholar 

  4. W. Polyzou, arXiv: 0908.1441

  5. R.N. Faustov, Ann. Phys. (NY) 78, 176 (1973)

    Article  ADS  Google Scholar 

  6. A.F. Krutov, V.E. Troitsky, Phys. Rev. C 65, 045501 (2002). arXiv:hep-ph/0210046

    Article  ADS  Google Scholar 

  7. A.F. Krutov, V.E. Troitsky, Phys. Rev. C 68, 018561 (2003). arXiv:hep-ph/0307217

    Article  ADS  Google Scholar 

  8. A.F. Krutov, R.G. Polezhaev, V.E. Troitsky, Phys. Rev. D 93, 036007 (2016). arXiv:1602.00907

    Article  ADS  Google Scholar 

  9. A.F. Krutov, R.G. Polezhaev, V.E. Troitsky, Phys. Rev. D 97, 033007 (2018). arXiv:1801.01458

    Article  ADS  Google Scholar 

  10. A.L. Licht, A. Pagnamenta, Phys. Rev. D 2(1150), 1156 (1970)

    Article  ADS  Google Scholar 

  11. M. Yärvinen, Phys. Rev. D 70, 065014 (2004)

    Article  ADS  Google Scholar 

  12. M. Yärvinen, Phys. Rev. D 71, 085006 (2005)

    Article  ADS  Google Scholar 

  13. D. Dietrich, P. Hoyer, M. Yärvinen, Phys. Rev. D 85, 105016 (2012)

    Article  ADS  Google Scholar 

  14. YuA. Simonov, Phys. Rev. D 91, 065001 (2015). arxiv: 1409.4964 [hep-ph]

  15. H.G. Dosch, YuA Simonov, Phys. Lett. B 205, 339 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  16. YuA Simonov, Phys. Rev. D 99, 056012 (2019). arXiv: 1804.08946 [hep-ph]

    Article  ADS  Google Scholar 

  17. YuA Simonov, Nucl. Phys. B 307, 512 (1988)

    Article  ADS  Google Scholar 

  18. YuA Simonov, Phys. Lett. B 226, 151 (1989)

    Article  ADS  Google Scholar 

  19. YuA Simonov, Phys. Lett. B 228, 413 (1989)

    Article  ADS  Google Scholar 

  20. YuA Simonov, J.A. Tjon, Ann. Phys. 300, 54 (2002)

    Article  ADS  Google Scholar 

  21. YuA. Simonov, Phys. Rev D 90, 013013 (2014). arXiv: 1402.2162 [hep-ph]

  22. YuA Simonov, Phys. Rev. D 88, 025028 (2013). arXiv:1303.4952 [hep-ph]

    Article  ADS  Google Scholar 

  23. YuA Simonov, Phys. Rev. D 99, 096025 (2019). arXiv:1902.05364

    Article  ADS  MathSciNet  Google Scholar 

  24. H.A. Lorentz, Encyclopaedie der Mathematischen Wissenschaften (Band V, art 13,14 (Teubner, Leipzig, 1904)

    Google Scholar 

  25. W. Pauli, Theory of Relativity (Pergamon Press, N.Y., 1958)

    MATH  Google Scholar 

  26. Yu. A. Simonov, Hadron form factors with boost-corrected wave functions, arXiv:2004.11466 [hep-ph]

  27. Yu. A. Simonov, Proton and neutron form factors with quark orbital momenta, arXiv:2010.12666

  28. Yu.A. Simonov, Phys. Rev. D 84, 065013 (2011). arXiv:1103.4028 [hep-ph]

  29. YuA Simonov, Phys. Atom. Nucl. 71, 1048 (2008)

    Article  ADS  Google Scholar 

  30. L. Micu, Nucl. Phys. B 10, 521 (1969)

    Article  ADS  Google Scholar 

  31. A. Le Yaouanc, L. Olivier, O. Pene, J. Raynal, Phys. Rev. D 8, 2223 (1973)

    Article  ADS  Google Scholar 

  32. A. Le Yaouanc, L. Olivier, O. Pene, J. Raynal, Phys. Rev. D 9, 1415 (1974)

    Article  ADS  Google Scholar 

  33. A. Le Yaouanc, L. Olivier, O. Pene, J. Raynal, Phys. Rev. D 11, 1272 (1975)

    Article  ADS  Google Scholar 

  34. A. Le Yaouanc, L. Olivier, O. Pene, J. Raynal, Phys. Rev. D 21, 182 (1980)

    Article  ADS  Google Scholar 

  35. R. Kokoski, N. Isgur, Phys. Rev. D 35, 907 (1987)

    Article  ADS  Google Scholar 

  36. R. Konyuk, N. Isgur, Phys. Rev. D 21, 1868 (1980)

    Article  ADS  Google Scholar 

  37. E.S. Ackleh, T. Barnes, E.S. Swanson, Phys. Rev. D 54, 6811 (1996)

    Article  ADS  Google Scholar 

  38. H. Blundell, S. Godfrey, Phys. Rev. D 53, 3700 (1996)

    Article  ADS  Google Scholar 

  39. S. Capstick, W. Roberts, Phys. Rev. D 47, 1994 (1993)

    Article  ADS  Google Scholar 

  40. T. Barnes; arXiv:hep-ph/0311102

  41. T. Barnes, S. Godfrey, E.S. Swanson, Phys. Rev. D 72, 054026 (2005)

    Article  ADS  Google Scholar 

  42. Yu. A. Simonov, Phys. At. Nucl. 66, 2045 (2003). arXiv:hep-ph/0211410 (2002)

  43. M.S. Lukashov, YuA Simonov, Phys. Rev. D 101, 094028 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  44. A. M. Badalian, M. S. Lukashov, Yu. A. Simonov. arXiv:2001.07113 [hep-ph]

  45. M. Tanabashi et al. (Particle Data Group), Phys. Rev.D 98, 030001 (2018) and 2019 update

  46. G.J. Gounaris, J.J. Sakurai, Phys. Rev. Lett. 21, 244 (1968)

    Article  ADS  Google Scholar 

  47. M. N. Achasov et al. (SND Collaboration); arXiv:2004.00263 [hep-ex]

  48. M. Ablikim et al., BES III Collaboration. Phys. Lett. B 753, 629 (2016)

  49. J. P. Lees (BaBaR Collaboration), Phys. Rev. D 86, 032013 (2012). arXiv:1205.2228

  50. Yu. A. Simonov, Phys. Atom. Nucl. 67, 1027 (2004). arXiv:hep-ph/030528

  51. M. Gell-Mann, R.L. Oakes, B. Renner, Phys. Rev. 175, 2195 (1968)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author is grateful to A. M. Badalian for useful discussions and advices. This work is supported by the Russian Science Foundation (RSF) in the framework of the scientific project, Grant 16-12-10414.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Simonov.

Additional information

Communicated by Reinhard Alkofer

Appendices

Appendix A1: The L dependence of the decay matrix element

Starting from the (8) one can write the decay matrix element \(J_L(p)\), when the string extending from \(x_Q\) to \(x_{{\bar{Q}}}\) decays at point x into two strings with the appropriate wave functions \(\psi _2,\psi _3\)

$$\begin{aligned} J_L(p)= & {} \int d^3x d^3(x_Q-x_{{\bar{Q}}}) \exp {ip(x_Q- x_{{\bar{Q}}})} \nonumber \\&\Psi _1^{(L)}(x_Q- x_{{\bar{Q}}}) \psi _2(x_Q -x) \psi _3(x-x_{{\bar{Q}}}). \end{aligned}$$
(A1.1)

Going over into the momentum space one obtains

$$\begin{aligned} J_L(p)= \int d^3q \Psi _1^{(L)}(p+q) \psi _2(q) \psi _3(q) \end{aligned}$$
(A1.2)

Here \(\Psi _1^L(p) ~ p^L\) and for \(L=1\) one obtains the linear dependence on p. One should stress the important property of (9) and (A1.1) - both hadrons 2 and 3 have the same internal momentum q which leads finally to the effects of Lorentz contraction in the decay width, while in absence of string breaking at the point x both momenta q and \(q'\) in \(\psi _2(q)\) and \(\psi _3(q')\) are independent, they are integrated separately and no contraction effects are visible.

Appendix A2. The pion wave function

The problem of chiral wave functions was studied in a series of papers during last 20 years (see [50] and refs therein) using the Chiral Confining Lagrangian (CCL) where CSB is directly connected with confinement and all known chiral relations like GMOR [51] are directly deduced from CCL. The main outcome of the CCL for the pion Green’s function in [50] is that it can be expanded as a series of \(q{\bar{q}}\) wave functions \((\phi _n(x)\) while the pion mass is strongly shifted from the set \(m_n\) and is defined by the vacuum condensate \(\langle {\bar{q}} q\rangle \) as it is seen in GMOR relations. As a result in [50] the pion Green’s function was obtained in the form \( G(k)= \frac{\Psi (k)}{(k^2 + m_{\pi }^2) \Phi (k)}\), where both \(\Psi (k),\Phi (k)\) are expressed via \(\phi _n(x)\) only and the lowest eigenfunction \(\phi _0(x)\) gives the dominant contribution. In a similar way the basic chiral parameters \(\langle {\bar{q}} q \rangle \) and \(f_\pi \) are expressed in [50] as a sum of \(\phi _n\) contributions with the dominant role of \(\phi _0\). Summarizing one can conclude that the pion is well described by the standard \(q {\bar{q}}\) nonchiral wave functions except for its mass which is strongly decreased by the vacuum effects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simonov, Y.A. Strong decays with the boost-corrected wave functions. Eur. Phys. J. A 57, 127 (2021). https://doi.org/10.1140/epja/s10050-021-00445-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00445-4

Navigation