Skip to main content
Log in

An assessment of the OpenFOAM implementation of the KNP scheme to simulate strong explosions

  • Technical Note
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

This paper explores the ability of the Kurganov, Noelle, and Petrova numerical scheme included in the rhoCentralFoam solver of the OpenFOAMsoftware to model strong explosion processes, using typical gas dynamics concepts. The main objective of this study was to obtain a numerical tool to simulate strong explosions. Once the generated blast waves and their propagation were simulated, the numerical results were compared with those of Sedov’s analytical solutions. Both numerical and analytical results were obtained from applications to geometrically cylindrical and spherical explosions. All comparisons were focused on the shock position as time elapsed and on the evolution of flow properties after the shock wave.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Notes

  1. http://flash.uchicago.edu/site/flashcode/.

  2. ARA stands for Armada de la República Argentina.

References

  1. Sedov, L.I.: Similarity and Dimensional Methods in Mechanics. CRC Press, London (2018). https://doi.org/10.1201/9780203739730

  2. Taylor, G.I.: The formation of a blast wave by a very intense explosion I. Theoretical discussion. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 201(1065), 159–174 (1950). https://doi.org/10.1098/rspa.1950.0049

  3. Whitham, G.B.: Linear and Nonlinear Waves. Wiley, Hoboken (2011). https://doi.org/10.1002/9781118032954.ch8

  4. Kurganov, A., Noelle, S., Petrova, G.: Semidiscrete central-upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations. SIAM J. Sci. Comput. 23(3), 707–740 (2001). https://doi.org/10.1137/S1064827500373413

    Article  MathSciNet  MATH  Google Scholar 

  5. Greenshields, C., Weller, H., Gasparini, L., Reese, J.: Implementation of semi-discrete, non-staggered central schemes in a colocated, polyhedral, finite volume framework, for high-speed viscous flows. Int. J. Numer. Methods Fluids 63(1), 1–21 (2010). https://doi.org/10.1002/fld.2069

    Article  MathSciNet  MATH  Google Scholar 

  6. Gutiérrez Marcantoni, L.F., Tamagno, J.P., Elaskar, S.A.: rhoCentralRfFoam: an OpenFOAM solver or high speed chemically active flows-Simulation of planar detonations-. Comput. Phys. Commun. 219, 209–222 (2017). https://doi.org/10.1016/j.cpc.2017.05.021

    Article  MathSciNet  Google Scholar 

  7. Gutiérrez Marcantoni, L.F., Tamagno, J.P., Elaskar, S.A.: Two-dimensional numerical simulations of detonation cellular structures in H2O2Ar mixtures with OpenFOAM®. Int. J. Hydrog. Energy 42(41), 26102–26113 (2017). https://doi.org/10.1016/j.ijhydene.2017.08.188

    Article  Google Scholar 

  8. Gutiérrez Marcantoni, L.F., Tamagno, J.P., Elaskar, S.A.: A numerical study on the impact of chemical modeling on simulating methane-air detonations. Fuel 240, 289–298 (2019). https://doi.org/10.1016/j.fuel.2018.11.147

    Article  Google Scholar 

  9. Azadboni, R.K., Wen, J.X., Heidari, A., Wang, C.: Numerical modeling of deflagration to detonation transition in inhomogeneous hydrogen/air mixtures. J. Loss Prevent. Process Indu. 49, 722–730 (2017). https://doi.org/10.1016/j.jlp.2017.04.024

    Article  Google Scholar 

  10. Landau, L., Lifshitz, E.: Fluid Mechanics, vol. 6. Elsevier Science, Amsterdam (2013)

    Google Scholar 

  11. Hayes, W., Probstein, R.: Hypersonic Flow Theory. Applied Mathematics and Mechanics: An International Series of Monographs, Academic Press, London (1959)

  12. Hung, C.: Definition of Contravarinat Velocity Components. 3rd Theoretical Fluid Mechanics Meeting, p. 3202 (2002). https://doi.org/10.2514/6.2002-3202

  13. Jasak, H., Jemcov, A., Tukovic, Z.: OpenFOAM: A C++ library for complex physics simulations. Int. Workshop on Coupled Methods in Numerical Dynamics, Dubrovnik, Croatia, Sept. 19–21 (2007). http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.453.9673&rep=rep1&type=pdf

  14. Gutiérrez Marcantoni, L.F., Tamagno, J.P., Elaskar, S.A.: High speed flow simulation using OpenFOAM. Mecánica Computacional 31, 2939–2959 (2012). https://cimec.org.ar/ojs/index.php/mc/article/viewFile/4231/4157

  15. Lorenzon, D., Elaskar, S.: Simulacion de flujos supersonicos bidimensionales y axialmente simetricos con OpenFOAM. Revista de la Facultad de Ciencias Exactas Físicas y Naturales 2, 65–76 (2015). https://revistas.unc.edu.ar/index.php/FCEFyN/article/view/11061

  16. Espinoza, D., Casseau, V., Scanlon, T., Brown, R.: An open-source hybrid CFD-DSMC solver for high speed flows. AIP Conf. Proc. 1786, 050007 (2016). https://doi.org/10.1063/1.4967557

  17. Zang, B., Vevek, U., Lim, H., Wei, X., New, T.: An assessment of OpenFOAM solver on RANS simulations of round supersonic free jets. J. Comput. Sci. 28, 18–31 (2018). https://doi.org/10.1016/j.jocs.2018.07.002

    Article  Google Scholar 

  18. EURIWARE-group: www.salome-platform.org. Technical report, OPEN CASCADE SAS (2019). https://www.salome-platform.org/

  19. Flash-User-Guide: FLASH User’s Guide. Technical report, University of Chicago (2019). http://flash.uchicago.edu/site/flashcode/user_support/flash_ug_devel.pdf

  20. Maritimeherald: The US Navy Revealed the Position of the Implosion of the ARA San Juan (2018). https://tinyurl.com/y3s78xwq. Accessed 03 Nov 2019

Download references

Acknowledgements

The authors thank CONICET, FONCyT, and SECyT of National University of Cordoba for supporting this research. Also, the authors thank P. Bruel for his fruitful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. F. Gutiérrez Marcantoni.

Additional information

Communicated by C. Needham.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marcantoni, L.F.G., Elaskar, S., Tamagno, J. et al. An assessment of the OpenFOAM implementation of the KNP scheme to simulate strong explosions. Shock Waves 31, 193–202 (2021). https://doi.org/10.1007/s00193-021-01008-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-021-01008-8

Keywords

Navigation