Skip to main content
Log in

Time History of Performance Parameters of WWR-K Reactor during Gradual Replacement of the Water Reflector by a Beryllium One

  • Published:
Russian Physics Journal Aims and scope

The water-cooled WWR-K research reactor has been operating since 2016 using low-enrichment uranium fuel. In order to maintain high levels of generated power and reactivity margin sufficient for a 21-day operation cycle, the water-cooled core reflector of neutrons was gradually, depending on the fuel burnup, replaced by a beryllium one in order to prevent decreasing of the reactor performance. A series of calculation studies are performed with a simulation of the core region of the WWR-K reactor using an MCNP transport code including determination of neutron flux density, reactivity, efficiency of the control rods of the control and protection systems, as well as kinetic parameters critical for ensuring safe reactor operation. The calculated curves of the principal performance characteristics of the WWR-K reactor are presented and analyzed in terms of their use in scientific research and their effect on the reactor operation safety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Shaimerdenov, D. A. Nakipov, F. M. Arinkin, et al., Phys. Atom. Nucl., 81, No. 10, 1408 (2018).

    Article  ADS  Google Scholar 

  2. D. A. Merezhko, M. S. Merezhko, M. N. Gussev, et al., Proc. 18th Int. Conf. on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors, The Minerals, Metals & Materials Series (Eds. J. H. Jackson, D. Paraventi, and M. Wright) (2019).

  3. M. S. Merezhko, O. P. Maksimkin, D. A. Merezhko, and A. A. Shaimerdenov, Phys. Met. Metallogr., 120, No. 7, 716 (2019).

    Article  ADS  Google Scholar 

  4. A. S. Larionov, E. A. Zhakanbayev, A. N. Karpikov, et al., J. Phys.: Conf. Ser., 1393, Iss. 1, Art. No. 012105 (2019).

  5. L. Chekushina, D. Dyussambaev, A. Shaimerdenov, et al., J. Nucl. Mater., 452, Iss. 1–3 (2014).

  6. I. Tazhibayeva, I. Beckman, V. Shestakov, et al., J. Nucl. Mater., 417, No. 1–3, 748 (2011).

    Article  ADS  Google Scholar 

  7. I. Tazhibayeva, M. Skakov, V. Baklanov, et al., Nucl. Fusion., 57, No. 12 (2017).

  8. F. M. Arinkin, A. A. Shaimerdenov, Sh. Kh. Gizatulin, et al., Atomn. Energ., 123, No. 1, 15 (2017).

    Google Scholar 

  9. IAEA Safeguards glossary 2001. Edition International Atomic Energy Agency, Vienna (2002).

    Google Scholar 

  10. https://www.rertr.anl.gov

  11. F. M. Arinkin, Sh. Kh. Gizatulin, Zh. R. Zhotabaev, et al., Reduced enrichment of research and test reactors, in: Proc. RERTR-2004, Vienna (2004).

  12. F. M. Arinkin, Sh. Kh. Gizatulin, ZS. N. Koltochnik, et al., Reduced enrichment of research and test reactors, in: Proc. RERTR-2009, Beijin (2004).

  13. F. M. Arinkin, P. V. Chakrov, L. V. Chekushina, et al., TPU Izvestiya. Ser. Facilities and Technologies in Power Engineering, 325, No. 4, 6 (2014).

    Google Scholar 

  14. A. A. Shaimerdenov, F. M. Arinkin, P. V. Chakrov, et al., Reduced enrichment of research and test reactors, in: Proc. RERTR-2016, Antwerp (2004).

  15. MCNP6 User’s Manual – Los Alamos National Laboratory, LA-CP-13-00634 (2013).

  16. M. B. Chadwick et al., Nucl. Data Sheets, 112, 2887 (2011).

    Article  ADS  Google Scholar 

  17. A. A. Zyryanova, Yu. V. Meteleva, A. V. Kozlov, et al., Problems Atomic Sci. Technol. Ser. Nucl. Reactor Constants, Iss. 1, 5 (2018).

  18. A.Naymushin, Y. Chertkov, Varlachev, et al., Adv. Mater. Res., 1084, 289 (2015). https://doi.org/10.4028/www.scientific.net/amr.1084.289.

  19. Yu. V. Stogov, Fundamentals of Neutron Physics: course book [in Russian], MIFI, Moscow (2008).

    Google Scholar 

  20. D. S. Sairanbayev, S. N. Koltochnik, А. А. Shaimerdenov, et al., NNC RK Bulletin, Iss. 1(73), 114 (2018).

  21. G. J. Fischer, 108, 99 (1957).https://doi.org/10.1103/PhysRev.108.99.

  22. Determination of Beryllium in Mountain Rocks and Beryllium Ores by the Photoneutron Method. Nuclear-Physical Methods. Instruction No.72-NP All-Union Institute of Mineral Raw Resources [in Russian], Moscow (1968).

  23. “Equipment Set of Control and Protection System for the VVR-K Reactor ASUZ-18r, RUNK, 501319.075”, SNIIP-Systematom, Moscow (2014).

  24. S. N. Koltochnik and A. A. Shaimerdenov, Eur. J. Phys. Funct. Mater., 3(3), 204 (2019).

    Article  Google Scholar 

  25. A. P. Olson and M. Kalimullah, A Users Guide to the PLTEMP/ANL V4.2Code, Argonne National Laboratory. Argonne, Illinois, USA (2011).

  26. IAEA safety standards No. SSR-3. Safety of research reactors. Specific safety requirements. International Atomic Energy Agency, Vienna (2016).

  27. A. P. Olson, B. Dionne, A. Marin-Lafleche, and M. Kalimullah, A Users Guide to PARET/ANL Version 7.5 r82160803, Nuclear Engineering Division, Argonne National Laboratory, Argonne, Illinois, USA (2016).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Sairanbayev.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 12, pp. 102–113, December, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sairanbayev, D.S., Koltochnik, S.N., Shaimerdenov, A.A. et al. Time History of Performance Parameters of WWR-K Reactor during Gradual Replacement of the Water Reflector by a Beryllium One. Russ Phys J 63, 2165–2177 (2021). https://doi.org/10.1007/s11182-021-02286-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-021-02286-6

Keywords

Navigation