Skip to main content
Log in

Estimation of Decomposition Temperature of Sodium Fluorouranate Isotopes

  • Published:
Russian Physics Journal Aims and scope

Sodium fluorouranates were studied to get the refined value of one of the fundamental constants with determination of differences between various uranium isotopes contained in these compounds. Such compounds as sodium heptafluorouranate can be classified as molecular substances with covalent bonds. The approach to the assessment of decomposition temperature of sodium fluoride compounds with various uranium isotopes based on the Mendeleev and Karapetyants methods, as well as on the quantum Landau representations is proposed. The Landau equation for the boiling point of isotopic compounds was corrected. The estimated decomposition (boiling) temperatures of sodium heptafluorouranates containing uranium isotopes 235U, 234U, and 232U were 453.8, 453.0, and 451.4 K respectively. The sublimation temperature of 271SgF6 was estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. I. Mendeleev, Zh. Russ. Khim. Obshch., 1, No.1, 60 (1869).

    Google Scholar 

  2. K. Masanori, Bull. History Chem., No. 27(1), 4 (2002).

  3. L. Boiabaudran, C. R. Hebd. Seanc. Acad. Sci., No. 81, 493 (1875).

  4. C. Winkler, Ber. Deutsch. Chem. Gesellsch., No. 19, 210 (1886).

  5. C. Winkler, J. Prakt. Chem., No. 34, 177 (1886).

  6. C. Winkler, J. Prakt. Chem., No. 36(1), 17 (1887).

  7. M. Kh. Karapetyants, Methods of Comparative Calculation of Physical and Chemical properties [in Russian], Nauka, Moscow (1965).

    Google Scholar 

  8. O. B. Gromov, Issues of atomic science and technology. Ser. Materials science and new materials, No. 4(95), 41 (2018).

  9. I. I. Zherin, A. I. Rudnikov, R. V. Ostvald, et al., J. Fluor. Chem., 221, 25 (2019). https://doi.org/10.1016/j.jfluchem.2019.03.003.

    Article  Google Scholar 

  10. G. D. Polenov, S. V. Chizhevskaya, A. F. Zhukov, and E. P. Magomedbekov, Atomic Energy, 122, Iss. 5, 346 (2017).

    Article  Google Scholar 

  11. A. Higelin and S. Riedel, Modern Synthesis Processes and Reactivity of Fluorinated Compounds, Freie Universität Berlin, Berlin (2017). DOI: https://doi.org/10.1016/b978-0-12-803740-9.00019-6.

    Book  Google Scholar 

  12. A. G. Ryabishchenkova and V. M. Kuznetsov, Russ. Phys. J., 62, No. 3, 512–518 (2019). DOI: https://doi.org/10.17223/00213411/62/3/110.

  13. H. Groult, F. R. Leroux, and A. Tressaud, Modern Synthesis Processes and Reactivity of Fluorinated Compounds: Progress in Fluorine Science Ser., French CNRS, Paris (2016).

    Google Scholar 

  14. B. Morel, A. Selmi, L. Moch , et al., C. R. Chim., 21, Iss. 8, 782 (2018).

  15. O. B. Gromov, Khim. Prom. Segodnya, No. 5, 35 (2018).

  16. D. R. McLain, J. L. Steeb, and N. A. Smith, Talanta, 1841, 227 (2018).

    Article  Google Scholar 

  17. E. Capelli and R. J. M. Konings, Materials Science and Materials Engineering (2020). https://doi.org/10.1016/B978-0-12-803581-8.11794-1.

  18. J. McFarianew, N. D. Bull Ezei, G. D. DeiCu, et al. ORNL/TM-2019/1266 (2019).

    Google Scholar 

  19. N. N. Ponomarev-Stepnoi, Atomn. Energ., 66, Vyp. 6, 371 (1989).

  20. A. A. Ivanov, V. D. Kolganov, V. A. Pavshuk, and V. F. Semenov, Atom. Energ., 66, Vyp. 6, 374 (1989).

  21. O. B. Gromov, Patent No. 2638384 RU, Bul. No. 35 (2016).

  22. A.Yu. Smirnov, G. A. Sulaberidze, A. A. Dudnikov, and V. A. Nevinitsa, Atomic Energy, 122, No 3, 353 (2017). https://doi.org/10.1007/s10512-017-0278-0.

    Article  Google Scholar 

  23. I. I. Lapidus, L. A. Niselson, and A. S. Seifer, Thermophysical Characteristics of Substances [in Russian], Izd. Stand., Moscow (1968).

    Google Scholar 

  24. T. A. O’Donnell and D. F. Stewart, Inorg. Chem., 5, No. 8, 1434 (1966).

    Article  Google Scholar 

  25. O. B. Gromov, 17 Radiochemical Conf., Booklet of Abstrackts, Marianske Lazne, Czech Republic (2014).

  26. S. Katz, Inorg. Chem., 3, No. 11, 1598 (1964).

    Article  Google Scholar 

  27. S. Katz, Inorg. Chem., 5, No. 4, 666 (1966).

    Article  Google Scholar 

  28. N. P. Galkin, V. A. Zaitsev, and M. B. Seregin, Capture and Processing of Fluorinated Gases [in Russian], Atomizd., Moscow (1975).

    Google Scholar 

  29. L. Pauling, General Chemistry, Freeman, San Francisco (1970).

    Google Scholar 

  30. A. G. Morachevskii and I. B. Sladkov, Physicochemical Properties of Molecular Inorganic Compounds [in Russian], Khimiya, Leningrad (1987).

    Google Scholar 

  31. L. D. Landau, Secret Appendix No. 1 “Vapor Pressure of Isotopes” by publication of К. F. Herzfeld аnd Е. Teller, Phys. Rev., 54, 912 (1938). “Difference in Vapor Pressure of Two Isotopes at a Given Temperature”, Atomn. Proyekt SSSR. Dok. I Mater. red. L. D. Ryabev, 1, Part. 2 (1938–1945), Izd. MFTI, Moscow (2002).

  32. R. Bougon, P. Charpin, J. P. Desmoulin, and J. G. Malm, Inorg. Chem., 15, 2532 (1976).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. B. Gromov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 12, pp. 90–95, December, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gromov, O.B., Travin, S.O. Estimation of Decomposition Temperature of Sodium Fluorouranate Isotopes. Russ Phys J 63, 2151–2157 (2021). https://doi.org/10.1007/s11182-021-02284-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-021-02284-8

Keywords

Navigation