Skip to main content
Log in

Study on Gelatin/Hydroxyapatite/Chitosan Material Modified with Osteoblast for Bone Bioengineering

  • Research Article-Biological Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Designing of a suitable ‘cell-material’ construct has enabled the regeneration of bone. It was in accordance with the increasing demand for the repair of defective and/or diseased bone tissue. In this research, the relative behavior of the osteoblast-seeded materials was demonstrated. It enabled the selection of the cell-material system for rabbit bone bioengineering studies. Significant role of polypeptide-polymer-ceramic-cell material in bone tissue engineering was shown. The properties of natural polymer-based scaffold were attributed to their origin and chemical modifications. In this study, the lyophilized osteoblast-material conjugate was designed and characterized extensively. The same was done by physicochemical measurement, for surface and core morphology analysis. The atomic force microscopy (AFM) and transmission electron microscopy (TEM) data from these conjugates have shown surface parameters. The surface suitable for cell attachment and proliferation along with uniform interconnected porous morphology was selected. The calcium to phosphate proportion-based energy-dispersive X-ray was done. It defines the inorganic content in these composites. The crystal spots were found from the selected area electron diffraction pattern. It had supported the insights from the physicochemical measurements. AFM and TEM micrographs have shown surface and core morphology with median surface roughness of 14.96 nm and uniform porous architecture, respectively. Fourier transmission Infra-red spectroscopy and X-ray diffraction had confirmed the formation of mineral deposits within the scaffolds. The subsequent in vitro study has revealed that among the biomaterials, ‘gelatin in hydroxyapatite-coated chitosan matrix’ has prominence over ‘gelatin-hydroxyapatite.’ It was confirmed only after seeding them with the rabbit ‘iliac crest-derived’ osteoblast. Two types of rabbit osteoblast derivatives were used. They are the osteoblast from the bone tissue (rT) and osteoblast obtained after Mesenchymal stem cell (MSCs) differentiation. Bone marrow was the source of MSCs. This ‘rT-seeded’ biomaterial was found appropriate for bone bioengineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Chen, Z.; Song, Y.; Zhang, J.; Liu, W.; Cui, J.; Li, H.; Chen, F.: Laminated electrospun nHA/PHB-composite scaffolds mimicking bone extracellular matrix for bone tissue engineering. Mater. Sci. Eng. C. 72, 341–351 (2017). https://doi.org/10.1016/j.msec.2016.11.070

    Article  Google Scholar 

  2. Rao, X.; Li, J.; Feng, X.; Chu, C.: Bone-like apatite growth on controllable macroporous titanium scaffolds coated with microporous titania. J. Mech. Behav. Biomed. Mater. 77, 225–233 (2018). https://doi.org/10.1016/j.jmbbm.2017.09.014

    Article  Google Scholar 

  3. Ramesh, S.; Tanb, C.Y.; Hamdib, M.; Sopyanc, I.; Tengd, W.D.: The influence of Ca/P ratio on the properties of hydroxyapatite. Bioceramics. 64, 231–236 (2010). https://doi.org/10.1117/12.779890

    Article  Google Scholar 

  4. Logithkumar, R.; Keshavnarayan, A.; Dhivya, S.; Chawla, A.; Saravanan, S.; Selvamurugan, N.: A review of chitosan and its derivatives in bone tissue engineering. Carbohydr. Polym. 151, 172–188 (2016). https://doi.org/10.1016/j.carbpol.2016.05.049

    Article  Google Scholar 

  5. Pighinelli, L.; Kucharska, M.: Chitosan–hydroxyapatite composites. Carbohydr. Polym. 93, 256–262 (2013). https://doi.org/10.1016/j.carbpol.2012.06.004

    Article  Google Scholar 

  6. Ramesh, S.; Adzila, S.; Jeffrey, C.K.L.; Tan, C.Y.; Purbolaksono, J.; Noor, A.M.; Hassan, M.A.; Sopyan, I.; Teng, W.D.: Properties of hydroxyapatite synthesize by wet chemical method. J. Ceram. Process. Res. 14, 448–452 (2013)

    Google Scholar 

  7. Yadav, N.; Srivastava, P.: Heliyon In vitro studies on gelatin/hydroxyapatite composite modified with osteoblast for bone bioengineering. Heliyon 5, e01633 (2019). https://doi.org/10.1016/j.heliyon.2019.e01633

    Article  Google Scholar 

  8. Orriss, I.R.; Hajjawi, M.O.R.; Huesa, C.; Macrae, V.E.; Arnett, T.R.: Optimisation of the differing conditions required for bone formation in vitro by primary osteoblasts from mice and rats. 1201–1208 (2014). https://doi.org/10.3892/ijmm.2014.1926.

  9. Us, A., Ab, A.: Method and means for culturing osteoblastic. Cells 6, 1–9 (2016)

    Google Scholar 

  10. Zhang, Y.; Venugopal, J.R.; El-Turki, A.; Ramakrishna, S.; Su, B.; Lim, C.T.: Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials 29, 4314–4322 (2008). https://doi.org/10.1016/j.biomaterials.2008.07.038

    Article  Google Scholar 

  11. Barua, E.; Deoghare, A.B.; Chatterjee, S.; Mate, V.R.: Characterization of mechanical and micro-architectural properties of porous hydroxyapatite bone scaffold using green microalgae as binder. Arab. J. Sci. Eng. 44(9), 7707–7722 (2019)

    Article  Google Scholar 

  12. Kong, L.; Gao, Y.; Lu, G.; Gong, Y.; Zhao, N.; Zhang, X.: A study on the bioactivity of chitosan/nano-hydroxyapatite composite scaffolds for bone tissue engineering. Eur. Polym. J. 42, 3171–3179 (2006). https://doi.org/10.1016/j.eurpolymj.2006.08.009

    Article  Google Scholar 

  13. Kruppke, B.; Heinemann, C.; Keroue, A.; Thomas, J.; Ro, S.; Wiesmann, H.; Gemming, T.; Worch, H.; Hanke, T.: Calcite and hydroxyapatite gelatin composites as bone substitution material made by the double migration technique. Crystal Growth (2017). https://doi.org/10.1021/acs.cgd.6b01595

    Article  Google Scholar 

  14. Meskinfam, M.; Bertoldi, S.; Albanese, N.; Cerri, A.; Tanzi, M.C.; Imani, R.; Baheiraei, N.; Farokhi, M.; Farè, S.: Polyurethane foam/nano hydroxyapatite composite as a suitable scaffold for bone tissue regeneration. Mater. Sci. Eng. C. (2018). https://doi.org/10.1016/j.msec.2017.08.064

    Article  Google Scholar 

  15. Gandhimathi, C.; Venugopal, J.R.; Tham, A.Y.; Ramakrishna, S.; Kumar, S.D.: Biomimetic hybrid nanofibrous substrates for mesenchymal stem cells differentiation into osteogenic cells. Mater. Sci. Eng. C. 49, 776–785 (2015). https://doi.org/10.1016/j.msec.2015.01.075

    Article  Google Scholar 

  16. Shakir, M.; Jolly, R.; Khan, M.S.; Rauf, A.; Kazmi, S.: Nano-hydroxyapatite/β-CD/chitosan nanocomposite for potential applications in bone tissue engineering. Int. J. Biol. Macromol. 93, 276–289 (2016). https://doi.org/10.1016/j.ijbiomac.2016.08.046

    Article  Google Scholar 

  17. Hakan, B.; Buyuk, B.; Huysal, M.; Isik, S.; Senel, M.; Metzger, W.; Cetin, G.: Preparation and characterization of amine functional nano-hydroxyapatite/chitosan bionanocomposite for bone tissue engineering applications. Carbohydr. Polym. 164, 200–213 (2017). https://doi.org/10.1016/j.carbpol.2017.01.100

    Article  Google Scholar 

  18. Shahbazarab, A.M.; Teimouri, Z.A.; Chermahini, A.N.: Fabrication and characterization of nanobiocomposite scaffold of zein/chitosan/nanohydroxyapatite prepared by freeze-drying method for bone tissue engineering. Int. J. Biol. Macromol. 108, 1017–1027 (2017). https://doi.org/10.1016/j.ijbiomac.2017.11.017

    Article  Google Scholar 

  19. Offeddu, G.S.; Ashworth, J.C.; Cameron, R.E.; Oyen, M.L.: Multi-scale mechanical response of freeze-dried collagen scaffolds for tissue engineering applications. J. Mech. Behav. Biomed. Mater. 42, 19–25 (2015). https://doi.org/10.1016/j.jmbbm.2014.10.015

    Article  Google Scholar 

  20. Maji, K.; Dasgupta, S.: Hydroxyapatite-Chitosan and gelatin based scaffold for bone tissue engineering. Trans. Indian Ceram. Soc. 73, 110–114 (2014)

    Article  Google Scholar 

  21. Kazimierczaka, P.; Benko, A., et al.: Novel synthesis method combining a foaming agent with freeze-drying to obtain hybrid highly macroporous bone scaffolds. J. Mater. Sci. Technol. 43, 52–63 (2020)

    Article  Google Scholar 

  22. Maji, K.; Dasgupta, S.: Development of gelatin-chitosan-hydroxyapatite based bioactive bone scaffold with controlled pore size and mechanical strength. J. Biomater. Sci. Polym. Ed. 26, 1190–1209 (2015)

    Article  Google Scholar 

  23. Shemshad, S.; Kamali, S.; Khavandi, A.; Azari, S.: Synthesis, characterization and in-vitro behavior of natural chitosan-hydroxyapatite-diopside nanocomposite scaffold for bone tissue engineering. Int. J. Polym. Mater. Polym. Biomater. 68, 516–526 (2019)

    Article  Google Scholar 

  24. Farshi Azhar, F; Olad, A: Fabrication and characterization of chitosan–gelatin/nanohydroxyapatite–polyaniline composite with potential application in tissue engineering scaffolds. Des. Monomers Polym. 17, 654–667 (2014)

    Article  Google Scholar 

  25. Mari, G.O.; Echave, C.; del Burgo, L.S.; Pedraz, J.L.: Gelatin as biomaterial for tissue engineering. Curr. Pharm. Des. 23, 3567–3584 (2017). https://doi.org/10.2174/0929867324666170511123101

    Article  Google Scholar 

  26. Nikkhah, M.; Akbari, M.; Paul, A.; Memic, A.; Dolatshahi Pirouz, A.; Khademhosseini, A.: Gelatin-based biomaterials for tissue engineering and stem cell bioengineering. In: Reis, N.M.N.R.L. (Ed.) Biomaterials from Nature for Advanced Devices and Therapies, 1st edn. Wiley, New York (2016). https://doi.org/10.1002/9781119126218.ch3

    Chapter  Google Scholar 

  27. Torabinejad, B.; Mohammadi-rovshandeh, J.; Mohammad, S.; Zamanian, A.: Synthesis and characterization of nanocomposite scaffolds based on triblock copolymer of L-lactide, ε-caprolactone and nano-hydroxyapatite for bone tissue engineering. Mater. Sci. Eng. C. 42, 199–210 (2014). https://doi.org/10.1016/j.msec.2014.05.003

    Article  Google Scholar 

  28. Wattanutchariya, W.; Changkowchai, W.: Characterization of porous scaffold from chitosan–gelatin/hydroxyapatite for bone grafting. In: Proceedings of the international multiconference of engineers and computer scientists 2014, vol 11, IMECS 2014, Hong Kong (2014)

  29. Somal, A.; Bhat, I.A.; Indu, B.; Pandey, S.; Panda, B.S.K.: A comparative study of growth kinetics, in vitro differentiation potential and molecular characterization of fetal adnexa derived caprine mesenchymal stem cells. PLoS ONE (2016). https://doi.org/10.1371/journal.pone.0156821

  30. Yunus, R.; TS,S.K.; Doble, M.: Design of biocomposite materials for bone tissue regeneration. Mater. Sci. Eng. C. 57, 452–463 (2015). https://doi.org/10.1016/j.msec.2015.07.016

    Article  Google Scholar 

  31. Sowjanya, J.A.; Singh, J.; Mohita, T.; Sarvanan, S.; Moorthi, A.; Srinivasan, N.; Selvamurugan, N.: Biointerfaces biocomposite scaffolds containing chitosan/alginate/nano-silica for bone tissue engineering. Colloids Surfaces B Biointerfaces 109, 294–300 (2013)

    Article  Google Scholar 

  32. Ch, H.; Scaffold, G.; Forero, J.C.; Osses, N.: Development of useful biomaterial for bone tissue engineering by incorporating nano-copper-zinc. Materials (Basel) 10, 1–15 (2017)

    Google Scholar 

  33. Yu, P.; Bao, R.; Shi, X.; Yang, W.; Yang, M.: Oxide/chitosan composite hydrogel for bone tissue engineering. Carbohydr. Polym. 155, 507–515 (2017)

    Article  Google Scholar 

  34. Panchalingam, K.M., Jung, S., Rosenberg, L., Behie, L.A.: Bioprocessing strategies for the large-scale production of human mesenchymal stem cells: a review. Stem Cell Res. Ther. 225, 1–10 (2015)

    Google Scholar 

  35. Yadav, N., Srivastava, P.: Osteoblast studied on gelatin based biomaterials in rabbit bone bioengineering. Mater. Sci. Eng. C. 104, 1–11 (2019)

    Google Scholar 

  36. Campagnoli, C.; Roberts, I.A.G.; Kumar, S.; Bennett, P.R.; Bellantuono, I.; Fisk, N.M.: Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood 98, 2396–2403 (2001)

    Article  Google Scholar 

  37. Abdallah, B.M.; Al-Shammary, A.; Skagen, P.; Abu Dawud, R.; Adjaye, J.; Aldahmash, A.; Kassem, M.: CD34 defines an osteoprogenitor cell population in mouse bone marrow stromal cells. Stem Cell Res 15, 449–458 (2015)

    Article  Google Scholar 

  38. Baghaei, K.; Hashemi, S.M.; Tokhanbigli, S.; Rad, A.A.; Assadzadeh, H.; Sharifian, A.; Zali, M.R.: Isolation, differentiation, and characterization of mesenchymal stem cells from human bone marrow. Gastroenterol. Hepatol. Bed Bench 10, 208–213 (2017)

    Google Scholar 

  39. Li, H.; Ghazanfari, R.; Zacharaki, D.; Lim, H.C.; Scheding, S.: Isolation and characterization of primary bone marrow mesenchymal stromal cells. Ann. N. Y. Acad. Sci. 1370, 109–118 (2016)

    Article  Google Scholar 

  40. Krishna, R.; Jiang, Z.; Chapman, P.; Le, X.; Mondinos, N.; Fawcett, D.; Eddy, G.; Poinern, J.: Ultrasonics sonochemistry effect of dilute gelatine on the ultrasonic thermally assisted synthesis of nano hydroxyapatite. Ultrason. Sonochem. 18, 697–703 (2011)

    Article  Google Scholar 

  41. Valencia, C.; Valencia, C.H.; Zuluaga, F.; Valencia, M.E.; Mina, J.H.; C.D.: Grande-tovar, synthesis and application of scaffolds of chitosan-graphene oxide by the freeze-drying method for tissue regeneration (n.d.). https://doi.org/10.3390/molecules23102651.

  42. Tee, S.; Fu, J.; Chen, C.S.; Janmey, P.A.: Cell shape and substrate rigidity both regulate cell stiffness. Biophys. J. 100, L25–L27 (2011)

    Article  Google Scholar 

  43. Mobini, S.; Javadpour, J.; Hosseinalipour, M.; Khavandi, A.; Rezaie, H.R.; Javadpour, J.; Hosseinalipour, M.; Mobini, S.; Javadpour, J.; Hosseinalipour, M.: Synthesis and characterisation of gelatin—nano hydroxyapatite composite scaffolds for bone tissue engineering. Adv. Appl. Ceram. 107, 4–8 (2013)

    Article  Google Scholar 

  44. Kim, H.; Jung, G.; Yoon, J.; Han, J.; Park, Y.; Kim, D.; Zhang, M.; Kim, D.: Preparation and characterization of nano-sized hydroxyapatite/alginate/chitosan composite scaffolds for bone tissue engineering. Mater. Sci. Eng. C. 54, 20–25 (2015)

    Article  Google Scholar 

  45. Katti, K.S.; Katti, D.R.; Dash, R.: Comparison on mechanical properties of single layered and bilayered chitosan–gelatin coated porous hydroxyapatite scaffold prepared through freeze drying method. IOP Mater. Sci. Eng. 172, 1–8 (2017)

    Google Scholar 

  46. Fatima, K.; Hossain, B.; Sikder, T.; Rahman, M.; Uddin, K.; Kurasaki, M.: Investigation of chromium removal efficacy from tannery effluent by synthesized chitosan from crab shell. Arab. J. Sci. Eng. 42, 1569–1577 (2017)

    Article  Google Scholar 

  47. Shalumon, R.; Anulekha, K.T.; Girish, K.H.; Prasanth, C.M.; Nair, R.; Jayakumar, S.V.: Single step electrospinning of chitosan/poly(caprolactone) nanofibers using formic acid/acetone solvent mixture. Carbohydr. Polym. 80, 413–419 (2010)

    Article  Google Scholar 

  48. Figueiredo, M.M., Gamelas, J.A.F., Martins, A.G.: Characterization of bone and bone-based graft materials using FTIR spectroscopy. Infrared Spectrosc. Life Biomed. Sci. 2, 315–338 (2012)

    Google Scholar 

  49. Hwan, M.; Yun, C.; Paul, E.; Wook, Y.; Wook, H.; Park, S.; Jung, W.; Oh, J.; Yun, S.: Quantitative analysis of the role of nanohydroxyapatite (nHA) on 3D-printed PCL/nHA composite scaffolds. Mater. Lett. 220, 112–115 (2018)

    Article  Google Scholar 

  50. Serra, I.R.; Fradique, R.; Vallejo, M.C.S.; Correia, T.R.; Miguel, S.P.; Correia, I.J.: Production and characterization of chitosan/gelatin/β-TCP scaffolds for improved bone tissue regeneration. Mater. Sci. Eng. C. 55, 592–604 (2015)

    Article  Google Scholar 

  51. Han, F.; Dong, Y.; Su, Z.; Yin, R.; Song, A.; Li, S.: Preparation, characteristics and assessment of a novel gelatin—chitosan sponge scaffold as skin tissue engineering material. Int. J. Pharm. 476, 124–133 (2014)

    Article  Google Scholar 

  52. Pelizzo, G.; Avanzini, M.A.; Icaro Cornaglia, A.; Osti, M.; Romano, P.; Avolio, L.; Maccario, R.; Dominici, M.; De Silvestri, A.; Andreatta, E.; Costanzo, F.; Mantelli, M.; Ingo, D.; Piccinno, S.; Calcaterra, V.: Mesenchymal stromal cells for cutaneous wound healing in a rabbit model: pre-clinical study applicable in the pediatric surgical setting. J. Transl. Med. 13, 1–14 (2015)

    Article  Google Scholar 

  53. Piotrowski, S.L.; Wilson, L.; Dharmaraj, N.; Hamze, A.; Clark, A.; Tailor, R.; Hill, L.R.; Lai, S.; Kasper, F.K.; Young, S.: Development and characterization of a rabbit model of compromised maxillofacial wound healing. Tissue Eng. Part C Methods 25, 160–167 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The original fieldwork support provided by IIT (BHU). The authors gratefully acknowledge CIFC, IIT (BHU) for the measurement of AFM, TEM-SAED and XRD. The authors thank Dr. Geeta Rai, Centre of Human and genetic resources BHU for the technical support. The authors are also grateful to the Prof. Amit Rastogi at I.M.S (B.H.U) for providing the osteoblast cell source availability.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Namrata Yadav.

Ethics declarations

Conflict of interest

None of the authors have a conflict of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, N., Srivastava, P. Study on Gelatin/Hydroxyapatite/Chitosan Material Modified with Osteoblast for Bone Bioengineering. Arab J Sci Eng 47, 165–178 (2022). https://doi.org/10.1007/s13369-021-05577-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05577-9

Keywords

Navigation