Skip to main content
Log in

Thermo-poro-mechanics under adsorption applied to the anomalous thermal pressurization of water in undrained clays

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Pore fluid pressurization, one of the main causes of soil instability, is known to be anomalously high for interstitial water in clay submitted to undrained heating. This anomaly is attributed to the confinement of water in nanometric micropores. In this work, we use molecular simulation to investigate how confinement affects the thermo-mechanical properties of water and we use a new poromechanical formulation (Laurent and Túlio in Int J Eng Sci 152:103296, 2020) to relate these confined properties to the macroscopic pressurization of water during undrained heating. This new formulation considers the effects of confinement on the thermo-mechanical moduli of water in micropores, and, in particular, it accounts for the break of extensivity with respect to the volume (Gibbs–Duhem equation not valid). The predictions regarding water thermal pressurization are consistent with the available experimental data when considering a double porosity medium (micro- and macro-pores) with osmotic equilibrium between the porosities. It suggests that the excess fluid pressurization arises from the drainage of water from the micro-porosity to the macro-porosity. The proposed poromechanics offers the first quantitative thermo-hydro-mechanical description of clay based on the physics of adsorption with wide perspectives for applications and transposition to other adsorption-sensitive materials (cement-based materials, wood, bones, microporous carbons etc.).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Allen MP, Tildesley DJ (1989) Computer simulation of liquids. Oxford University Press

  2. Berendsen HJC, Grigera JR, Straatsma TP (1987) The missing term in effective pair potentials. J Phys Chem 91(24):6269–6271

    Article  Google Scholar 

  3. Boek ES, Coveney PV, Skipper NT (1995) Molecular modeling of clay hydration: a study of hysteresis loops in the swelling curves of sodium montmorillonites. Langmuir 11(12):4629–4631

    Article  Google Scholar 

  4. Bonnaud Patrick A, Hegoi M, Ryuji M, Ai S, Naoto M, Nozomu H, Akira M (2016) Temperature dependence of nanoconfined water properties: application to cementitious materials. J. Phys. Chem. C 120(21):11465–11480

    Article  Google Scholar 

  5. Brochard L, Honorio T (2020) Revisiting thermo-poro-mechanics under adsorption: formulation without assuming Gibbs–Duhem equation. Int J Eng Sci 152:103296

    Article  MathSciNet  Google Scholar 

  6. Brochard L, Honório T, Vandamme M, Bornert M, Peigney M (2017) Nanoscale origin of the thermo-mechanical behavior of clays. Acta Geotech 12(6):1261–1279

    Article  Google Scholar 

  7. Bu Y, Chang Z, Du J, Liu D (2017) Experimental study on the thermal expansion property and mechanical performance of oil well cement with carbonaceous admixtures. RSC Adv 7(46):29240–29254

    Article  Google Scholar 

  8. Benoit C, Matthieu V, Pellenq Roland J-M, Henri VD (2014) Elastic properties of swelling clay particles at finite temperature upon hydration. J Phys Chem C 118(17):8933–8943

    Article  Google Scholar 

  9. Chester Frederick M, Christie R, Kohtaro U, James K, Christine R, Francesca R, Casey MJ, Virginia T, Wolfson-Schwehr M, Bose S, Kameda J, Mori JJ, Brodsky EE, Eguchi N, Toczko S (2013) Structure and composition of the plate-boundary slip zone for the 2011 tohoku-Oki earthquake. Science 342(6163):1208–1211

    Article  Google Scholar 

  10. Coussy O (2010) Mechanics and physics of porous solids. Wiley, Chichester

    Book  Google Scholar 

  11. Cygan Randall T, Jian-Jie L, Kalinichev Andrey G (2004) Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field. J Phys Chem B 108(4):1255–1266

    Article  Google Scholar 

  12. Derjaguin BV, Karasev VV, Khromova EN (1986) Thermal expansion of water in fine pores. J Colloid Interface Sci 109(2):586–587

    Article  Google Scholar 

  13. Derjaguin BV, Karasev VV, Ur’ev NB (1992) Peculiarities of the thermal expansion of water in the pores of aerosil powder. Prog Surf Sci 40(1–4):414–417

    Article  Google Scholar 

  14. Garofalini Stephen H, Mahadevan Thiruvilla S, Shuangyan X, Scherer George W (2008) Molecular mechanisms causing anomalously high thermal expansion of nanoconfined water. ChemPhysChem 9(14):1997–2001

    Article  Google Scholar 

  15. Ghabezloo S (2011) Micromechanics analysis of thermal expansion and thermal pressurization of a hardened cement paste. Cem Concr Res 41(5):520–532

    Article  Google Scholar 

  16. Ghabezloo S, Sulem J, Saint-Marc J (2009) The effect of undrained heating on a fluid-saturated hardened cement paste. Cem Concr Res 39(1):54–64

    Article  Google Scholar 

  17. Gouin H (2009) Liquid nanofilms A mechanical model for the disjoining pressure. Int J Eng Sci 47(5–6):691–699

    Article  MathSciNet  Google Scholar 

  18. Hensen EJ, Smit Berend M (2002) Why clays swell. J Phys Chem B 106(49):12664–12667

    Article  Google Scholar 

  19. Hepler Loren G (1969) Thermal expansion and structure in water and aqueous solutions. Can J Chem 47(24):4613–4617

    Article  Google Scholar 

  20. Honorio T, Brochard L, Vandamme M (2018) Effective stresses and estimations of the apparent Biot coefficient in stacked clay nanolayers. Géotech Lett 8(2):1–18

    Article  Google Scholar 

  21. Honorio T, Brochard L, Vandamme M (2017) Hydration phase diagram of clay particles from molecular simulations. Langmuir 33(44):12766–12776

    Article  Google Scholar 

  22. Israelachvili Jacob N (1992) Adhesion forces between surfaces in liquids and condensable vapours. Surf Sci Rep 14(3):109–159

    Article  Google Scholar 

  23. Krishnan NA, Wang B, Falzone G, Le Pape Y, Neithalath N, Pilon L, Bauchy M, Sant G (2016) Confined water in layered silicates: the origin of anomalous thermal expansion behavior in calcium-silicate-hydrates. ACS Appl Mater Interfaces 8(51):35621–35627

    Article  Google Scholar 

  24. Marcus Y (2009) Effect of ions on the structure of water: structure making and breaking. Chem Rev 109(3):1346–1370

    Article  Google Scholar 

  25. Michot Laurent J, Villiéras F, François M, Bihannic I, Pelletier M, Cases J-M (2002) Water organisation at the solid-aqueous solution interface. CR Geosci 334(9):611–631

    Article  Google Scholar 

  26. Monfared M, Sulem J, Delage P, Mohajerani M (2011) A laboratory investigation on thermal properties of the opalinus claystone. Rock Mech Rock Eng 44(6):735–747

    Article  Google Scholar 

  27. Murad Márcio A, Cushman John H (2000) Thermomechanical theories for swelling porous media with microstructure. Int J Eng Sci 38(5):517–564

    Article  MathSciNet  Google Scholar 

  28. Oleinikova A, Brovchenko I (2012) Thermodynamic properties of hydration water around solutes: effect of solute size and water-solute interaction. J Phys Chem B 116(50):14650–14659

    Article  Google Scholar 

  29. Oleinikova A, Brovchenko I, Winter R (2009) Volumetric properties of hydration water. J Phys Chem C 113(25):11110–11118

    Article  Google Scholar 

  30. Plassard C, Lesniewska E, Pochard I, Nonat A (2005) Nanoscale experimental investigation of particle interactions at the origin of the cohesion of cement. Langmuir 21(16):7263–7270

    Article  Google Scholar 

  31. Schappert K, Pelster R (2008) Elastic properties and freezing of argon confined in mesoporous glass. Phys Rev B 78(17):174108

    Article  Google Scholar 

  32. Schappert K, Pelster R (2013) Elastic properties of liquid and solid argon in nanopores. J Phys: Condens Matter 25(41):415302

    Google Scholar 

  33. Tambach Tim J, Bolhuis Peter G, Hensen Emiel JM, Berend S (2006) Hysteresis in clay swelling induced by hydrogen bonding: accurate prediction of swelling states. Langmuir 22(3):1223–1234

    Article  Google Scholar 

  34. Thiel Patricia A, Madey Theodore E (1987) The interaction of water with solid surfaces: fundamental aspects. Surf Sci Rep 7(6–8):211–385

    Article  Google Scholar 

  35. Thol M, Rutkai G, Köster A, Lustig R, Span R, Vrabec J (2016) Equation of State for the Lennard-Jones fluid. J Phys Chem Ref Data 45(2):023101

    Article  Google Scholar 

  36. Valenza John J, Scherer George W (2005) Evidence of anomalous thermal expansion of water in cement paste. Cem Concr Res 35(1):57–66

    Article  Google Scholar 

  37. Vincke O, Longuemare P, Bouteca M, Deflandre JP (1998) Investigation of the poromechanical behavior of shales in the elastic domain. In: SPE/ISRM rock mechanics in petroleum engineering, number July. Society of Petroleum Engineers, Apr 1998

  38. Wang H, Hellmich C, Yuan Y, Mang H, Pichler B (2018) May reversible water uptake/release by hydrates explain the thermal expansion of cement paste? Arguments from an inverse multiscale analysis. Cement Concr Res 113:13–26

    Article  Google Scholar 

  39. Xu S, Scherer GW, Mahadevan TS, Garofalini SH (2009) Thermal expansion of confined water. Langmuir 25(9):5076–5083

    Article  Google Scholar 

  40. Xu S, Simmons GC, Scherer GW (2003) Thermal expansion and viscosity of confined liquids. MRS Proc 790:6–8

    Article  Google Scholar 

  41. Yurikov A, Lebedev M, Pervukhina M, Gurevich B (2019) Water retention effects on elastic properties of Opalinus shale. Geophys Prospect 67(4):984–996

    Article  Google Scholar 

  42. Yang Z, Borja Ronaldo I (2020) A continuum framework for coupled solid deformation-fluid flow through anisotropic elastoplastic porous media. Comput Methods Appl Mech Eng 369:113225

    Article  MathSciNet  Google Scholar 

  43. Zhou X, Ghassemi A (2019) Biot’s effective stress coefficient tensor measurements on mancos shale. In: 53rd U.S. rock mechanics/geomechanics symposium, pages ARMA–2019–0516. American Rock Mechanics Association

Download references

Acknowledgements

We gratefully acknowledge funding through the project TEAM2ClayDesicc from the French National Research Agency (Agence Nationale de la Recherche, contract ANR-14-CE05-0023-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Brochard.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brochard, L., Honório, T. Thermo-poro-mechanics under adsorption applied to the anomalous thermal pressurization of water in undrained clays. Acta Geotech. 16, 2713–2727 (2021). https://doi.org/10.1007/s11440-021-01188-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-021-01188-8

Keywords

Navigation