Skip to main content
Log in

Regularity results for a class of nonlinear fractional Laplacian and singular problems

  • Published:
Nonlinear Differential Equations and Applications NoDEA Aims and scope Submit manuscript

Abstract

In this article, we investigate the existence, uniqueness, nonexistence, and regularity of weak solutions to the nonlinear fractional elliptic problem of type (P) (see below) involving singular nonlinearity and singular weights in smooth bounded domain. We prove the existence of weak solution in \(W_{loc}^{s,p}(\Omega )\) via approximation method. Establishing a new comparison principle of independent interest, we prove the uniqueness of weak solution for \(0 \le \delta < 1+s- \frac{1}{p}\) and furthermore the nonexistence of weak solution for \(\delta \ge sp.\) Moreover, by virtue of barrier arguments we study the behavior of weak solutions in terms of distance function. Consequently, we prove Hölder regularity up to the boundary and optimal Sobolev regularity for weak solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adimurthi, J.G., Santra, S.: Positive solutions to a fractional equation with singular nonlinearity. J. Differ. Equ. 265(4), 1191–1226 (2018)

    Article  MathSciNet  Google Scholar 

  2. Arora, R., Giacomoni, J., Goel, D., Sreenadh, K.: Positive solutions of 1-D half-Laplacian equation with singular exponential nonlinearity. Asymptot. Anal. 118(1–2), 1–34 (2020)

    MathSciNet  MATH  Google Scholar 

  3. Barrios, B., De Bonis, I., Medina, M., Peral, I.: Semilinear problems for the fractional Laplacian with a singular nonlinearity. Open Math. 13, 390–407 (2015)

    Article  MathSciNet  Google Scholar 

  4. Boccardo, L., Orsina, L.: Semilinear elliptic equations with singular nonlinearities. Calc. Var. Partial Differ. Equ. 37, 363–380 (2010)

    Article  MathSciNet  Google Scholar 

  5. Bougherara, B., Giacomoni, J., Hernández, J.: Some regularity results for a singular elliptic problem. Dyn. Syst. Differ. Equ. Appl. Proc. AIMS 2015, 142–150 (2015)

  6. Brasco, L., Lindgren, E., Schikorra, A.: Higher Hölder regularity for the fractional p-Laplacian in the superquadratic case. Adv. Math. 338, 782–846 (2018)

    Article  MathSciNet  Google Scholar 

  7. Brasco, L., Parini, E.: The second eigenvalue of the fractional p-Laplacian. Adv. Calc. Var. 9(4), 323–355 (2016)

    Article  MathSciNet  Google Scholar 

  8. Bucur, C., Valdinoci, E.: Nonlocal diffusion and applications. Lecture Notes of the Unione Matematica Italiana, 20: xii+155 (2016)

  9. Caffarelli, L., Silvestre, L.: Regularity theory for fully nonlinear integrodifferential equations. Commun. Pure Appl. Math. 62(5), 597–638 (2009)

    Article  Google Scholar 

  10. Caffarelli, L., Silvestre, L.: Regularity results for nonlocal equations by approximation. Arch. Rat. Mech. Anal. 200, 59–88 (2011)

    Article  MathSciNet  Google Scholar 

  11. Canino, A., Montoro, L., Sciunzi, B., Squassina, M.: Nonlocal problems with singular nonlinearity. Bull. Sci. Math. 141(3), 223–250 (2017)

    Article  MathSciNet  Google Scholar 

  12. Canino, A., Sciunzi, B., Trombetta, A.: Existence and uniqueness for p-Laplace equations involving singular nonlinearities. NoDEA Nonlinear Differ. Equ. Appl. 23(2), 1–18 (2016)

    Article  MathSciNet  Google Scholar 

  13. Di Castro, A., Kuusi, T., Palatucci, G.: Local behavior of fractional p-minimizers. Ann. Inst. H. Poincaré Anal. Non Linéaire 33, 1279–1299 (2016)

  14. Crandall, M.G., Rabinowitz, P.H., Tartar, L.: On a Dirichlet problem with a singular nonlinearity. Commun. Partial Differ. Equ. 2, 193–222 (1977)

    Article  MathSciNet  Google Scholar 

  15. Diáz, J.I., Morel, J.M., Oswald, L.: An elliptic equation with singular nonlinearity. Commun. Partial Differ. Equ. 12, 1333–1344 (1987)

    Article  MathSciNet  Google Scholar 

  16. Diáz, J.I., Hernández, J., Rakotoson, J.M.: On very weak positive solutions to some semilinear elliptic problems with simultaneous singular nonlinear and spatial dependence terms. Milan J. Math. 79, 233–245 (2011)

    Article  MathSciNet  Google Scholar 

  17. Fiscella, A., Servadei, R., Valdinoci, E.: Density properties for fractional Sobolev spaces. Ann. Acad. Sci. Fenn. Math. 40, 235–253 (2015)

    Article  MathSciNet  Google Scholar 

  18. Franzina, G., Palatucci, G.: Fractional p-eigen values. Riv. Math. Univ. Parma (N.S.) 5(2), 373–386 (2014)

  19. Fulks, W., Maybee, J.S.: A singular nonlinear equation. Osaka J. Math. 12, 1–19 (1960)

    MathSciNet  MATH  Google Scholar 

  20. Gamba, I.M., Jungel, A.: Positive solutions to a singular second and third order differential equations for quantum fluids. Arch. Ration. Mech. Anal. 156, 183–203 (2001)

    Article  MathSciNet  Google Scholar 

  21. Ghergu, M., Radulescu, V.: Singular Elliptic Problems: Bifurcation and Asymptotic Analysis. Oxford University Press (2008)

  22. Ghergu, M., Radulescu, V.: Multiparameter bifurcation and asymptotics for the singular Lane-Emden-Fowler equation with a convection term. Proc. R. Soc. Edinb. Sect. A (Math.) 135, 61–84 (2005)

    Article  Google Scholar 

  23. Giacomoni, J., Kumar, D., Sreenadh, K.: Sobolev and Hölder regularity results for some Singular double phase problems. arXiv:2004.06699

  24. Giacomoni, J., Mukherjee, T., Sreenadh, K.: Positive solutions of fractional elliptic equation with critical and singular nonlinearty. Adv. Nonlinear Anal. 6(3), 327–354 (2017)

    Article  MathSciNet  Google Scholar 

  25. Giacomoni, J., Schindler, I., Takáč, P.: Sobolev versus Hölder local minimizers and existence of multiple solutions for a singular quasilinear equation. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 6(1), 117–158 (2007)

  26. Giacomoni, J., Sreenadh, K.: Multiplicity results for a singular and quasilinear equation. In: Discrete and Continuous Systems. Proceedings of the 6th AIMS International Conference, pp. 429–435 (2007)

  27. Gomes, S.M.: On a singular nonlinear elliptic problem. SIAM J. Math. Anal. 17, 1359–1369 (1986)

    Article  MathSciNet  Google Scholar 

  28. Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Monographs and Studies in Mathematics, vol. 24. Pitman (Advances Publishing Program), Boston (1985)

  29. Haitao, Y.: Multiplicity and asymptotic behavior of positive solutions for a singular semilinear elliptic problem. J. Differ. Equ. 189, 487–512 (2003)

    Article  MathSciNet  Google Scholar 

  30. Hernández, J., Mancebo, F.J.: Singular elliptic and parabolic equations. Handb. Differ. Equ. 3, 317–400 (2006)

    MATH  Google Scholar 

  31. Hernández, J., Mancebo, F., Vega, J.M.: Nonlinear Singular Elliptic Problems: Recent Results and Open Problems. Nonlinear Elliptic and Parabolic Problems. Progress in Nonlinear Differential Equations and their Applications, vol. 64, pp. 227–242. Birkhäuser, Basel (2005)

  32. Hirano, N., Saccon, C., Shioji, N.: Existence of multiple positive solutions for singular elliptic problems with concave and convex nonlinearities. Adv. Differ. Equ. 9, 197–220 (2004)

    MathSciNet  MATH  Google Scholar 

  33. Iannizzotto, A., Mosconi, S., Squassina, M.: Global Hölder regularity for the fractional p-Laplacian. Rev. Mat. Iberoam. 32, 1353–1392 (2016)

    Article  MathSciNet  Google Scholar 

  34. Kuusi, T., Palatucci, G. (eds.): Recent Developments in Nonlocal Theory. De Gruyter, Berlin (2018)

    MATH  Google Scholar 

  35. Lazer, A.C., McKenna, P.J.: On a singular nonlinear elliptic boundary-value problem. Proc. Am. Math. Soc. 111, 721–730 (1991)

    Article  MathSciNet  Google Scholar 

  36. Lindgren, E.: Hölder estimates for viscosity solutions of equations of fractional p-Laplace type. NoDEA Nonlinear Differ. Equ. Appl. 23, 23–55 (2016)

    Article  Google Scholar 

  37. Mukherjee, T., Sreenadh, K.: On Dirichlet problem for fractional p-Laplacian with singular non-linearity. Adv. Nonlinear Anal. 8(1), 52–72 (2019)

    Article  MathSciNet  Google Scholar 

  38. Leandro Del Pezzo, M., Quaas, A.: A Hopf’s lemma and a strong minimum principle for the fractional p-Laplacian. J. Differ. Equ. 263(1), 765–778 (2017)

    Article  MathSciNet  Google Scholar 

  39. Ros-Oton, X., Serra, J.: The Dirichlet problem for the fractional Laplacian: regularity up to the boundary. J. Math. Pures Appl. 101, 275–302 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques Giacomoni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Appendix

A Appendix

In this section, we recall the local regularity results for the fractional p-Laplacian. We set for \(R>0\) and \(y \in {\mathbb {R}}^N\)

$$\begin{aligned} Q(u;y,R)= & {} \Vert u\Vert _{L^\infty (B_R(y))} + \left( R^{sp} \int _{(B_R(y))^c} \frac{|u(x)|^{p-1}}{|x-y|^{N+sp}} ~dx\right) ^\frac{1}{p-1}. \end{aligned}$$

Proposition A.1

(Corollary 5.5, [33]) If \(u \in {\overline{W}}^{s,p}(B_{2R_0}(y)) \cap L^\infty (B_{2R_0}(y))\) satisfies \(|{{(-\Delta )}^{s}_{p}} u| \le K\) weakly in \(B_{2R_0}(y)\) for some \(R_0>0\), then there exists universal constants \(\omega \in (0,1)\) and \(C>0\) with the following property:

$$\begin{aligned}&[u]_{C^{\omega }(B_{R_0}(x_0))}:=\sup _{x,y\in B_{R_0}(x_0)}\frac{|u(x)-u(y)|}{|x-y|^{\omega }} \\&\qquad \le C [(K R_0^{sp})^{\frac{1}{p-1}} + Q(u;x_0,2R_0)] R_0^{-\omega }. \end{aligned}$$

Proposition A.2

(Theorem 1.4, [6]) Let \(p\in [2,\infty )\) and \(u \in W^{s,p}_{loc}(\Omega ) \cap L^\infty _{loc}(\Omega ) \cap L^{p-1}({\mathbb {R}}^N)\) be a local weak solution of \({{(-\Delta )}^{s}_{p}} u = f\) in \(\Omega \) with \(f \in L^\infty _{loc}(\Omega ).\) Then \(u \in C^{\omega }_{loc}(\Omega )\) for every \(0< \omega < \min \{\frac{sp}{p-1},1\}.\) More precisely, for every \(0< \omega < \min \{\frac{sp}{p-1},1\}\) and every ball \(B_{4R}(x_0) \Subset \Omega \), there exists a constant \(C= C(N,s,p,\omega )\) such that

$$\begin{aligned}{}[u]_{C^{\omega }(B_{\frac{R}{8}}(x_0))} \le C [(\Vert f\Vert _{L^\infty (B_R(x_0))} R^{sp})^{\frac{1}{p-1}} + Q(u;x_0,R)] R^{-\omega }. \end{aligned}$$

Moreover we recall the following result which is suitable for the acquisition estimates of Theorems 3.2 and 3.3.

Lemma A.1

(Lemma 2.5, [33]) Let \(u \in {\overline{W}}^{s,p}_{loc}(\Omega )\). For \(\epsilon >0\), let \(A_\epsilon \subset {\mathbb {R}}^N \times {\mathbb {R}}^N\) be a neighbourhood of D, the diagonal of \({\mathbb {R}}^N \times {\mathbb {R}}^N\), which satisfies

  1. (i)

    \((x,y) \in A_\epsilon \) for all \((y,x) \in A_\epsilon \),

  2. (ii)

    \(\max \left\{ \sup _{x \in A_\epsilon } {{\,\mathrm{dist}\,}}(x,D), \sup _{y \in D} {{\,\mathrm{dist}\,}}(y,A_\epsilon )\right\} \rightarrow 0\) as \( \epsilon \rightarrow 0^+.\)

For all \(x \in {\mathbb {R}}^N\), we define \(A_\epsilon (x)= \{y \in {\mathbb {R}}^N: (x,y) \in A_\epsilon \}\) and

$$\begin{aligned} f_\epsilon (x) = 2\int _{(A_\epsilon (x))^c} \frac{[u(x)-u(y)]^{p-1}}{|x-y|^{N+sp}} ~dy. \end{aligned}$$

Assume that \(f_\epsilon \rightarrow f\) in \(L^1_{loc}(\Omega )\). Then, u satisifies

$$\begin{aligned} {{(-\Delta )}^{s}_{p}}\, u = f \ \ \ \text {E-weakly in}\ \Omega . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arora, R., Giacomoni, J. & Warnault, G. Regularity results for a class of nonlinear fractional Laplacian and singular problems. Nonlinear Differ. Equ. Appl. 28, 30 (2021). https://doi.org/10.1007/s00030-021-00693-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00030-021-00693-9

Keywords

Mathematics Subject Classification

Navigation