Skip to main content

Advertisement

Log in

Fabrication of cellulose nanocrystal-decorated hydroxyapatite nanostructures using ultrasonication for biomedical applications

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

In this study, we have successfully synthesized cellulose nanocrystal/hydroxyapatite nanostructure (CN/HAP) hybrids using Phoenix dactylifera lignocellulosic biomass and eggshell as bio-precursors. CN/HAP nanohybrids were synthesized via ultrasonication. The prepared nanohybrids were characterized via Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis, scanning electron microscopy, and transmission electron microscopy (TEM). XRD and FTIR results indicate CN/HAP hybrid formation. TEM images displayed ~10 to 50 nm HAP nanoparticles decorated on 100 to 200 nm CN matrix. Cell viability assay and acridine orange/ethidium bromide staining results revealed that CN/HAP nanohybrids do not alter cell viability and morphology, indicating that nanohybrids are non-toxic and biocompatible. CN/HAP nanohybrids increased alkaline phosphatase (ALP) activity and calcium nodule formation with upregulation of osteogenic marker (BMP-2, BMP-4, ALP, and BGLAP) gene expression in hMSCs. Overall, the findings suggest that agro-waste-derived CN/HAP hybrids can be suitable for bone tissue engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Al-Hadi AM, Periasamy VS, Athinarayanan J, Alshatwi AA (2016) The presence of carbon nanostructures in bakery products induces metabolic stress in human mesenchymal stem cells through CYP1A and p53 gene expression. Environ Toxicol Pharmacol 41:103–112

    Article  Google Scholar 

  2. Al-Khalifah NS, Askari E, Khan AS (2012) Molecular and morphological identification of some elite varieties of date palms grown in Saudi Arabia. Emirates J Food Agric 24(5):456

    Google Scholar 

  3. Alshatwi AA, Athinarayanan J, Periasamy VS (2015a) Biocompatibility assessment of rice husk-derived biogenic silica nanoparticles for biomedical applications. Mater Sci Eng C 47:8–16

    Article  Google Scholar 

  4. Alshatwi AA, Athinarayanan J, Periasamy VS (2015b) Green synthesis of bimetallic Au@Pt nanostructures and their application for proliferation inhibition and apoptosis induction in human cervical cancer cell. J Mater Sci Mater Med 26(3):148

    Article  Google Scholar 

  5. Alshatwi AA, Athinarayanan J, Subbarayan PV (2015c) Green synthesis of platinum nanoparticles that induce cell death and G2/M-phase cell cycle arrest in human cervical cancer cells. J Mater Sci Mater Med 26:7

    Article  Google Scholar 

  6. Apalangya VA, Rangari VK, Tiimob BJ, Jeelani S, Samuel T (2019) Eggshell based nano-engineered hydroxyapatite and poly(lactic) acid electrospun fibers as potential tissue scaffold. Int J Biomater 2019:6762575

    Article  Google Scholar 

  7. Athinarayanan J, Periasamy VS, Alshatwi AA (2014) Biogenic silica-metal phosphate (metal = Ca, Fe or Zn) nanocomposites: fabrication from rice husk and their biomedical applications. J Mater Sci Mater Med 25(7):1637–1644

    Article  Google Scholar 

  8. Athinarayanan J, Periasamy VS, Alhazmi M, Alatiah KA, Alshatwi AA (2015) Synthesis of biogenic silica nanoparticles from rice husks for biomedical applications. Ceram Int 41(1):275–281

    Article  Google Scholar 

  9. Athinarayanan J, Periasamy VS, Alshatwi AA (2018a) Fabrication and cytotoxicity assessment of cellulose nanofibrils using Bassia eriophora biomass. Int J Biol Macromol 117:911–918

    Article  Google Scholar 

  10. Athinarayanan J, Periasamy VS, Krishnamoorthy R, Alshatwi AA (2018b) Evaluation of antibacterial and cytotoxic properties of green synthesized Cu2O/graphene nanosheets. Mater Sci Eng C 93:242–253

    Article  Google Scholar 

  11. Athinarayanan J, Periasamy VS, Alshatwi AA (2019a) Phoenix dactylifera lignocellulosic biomass as precursor for nanostructure fabrication using integrated process. Int J Biol Macromol 134:1179–1186

    Article  Google Scholar 

  12. Athinarayanan J, Periasamy VS, Qasem AA, Al-Shagrawi RA, Alshatwi AA (2019b) Synthesis of SiO2 nanostructures from Pennisetum glaucum and their effect on osteogenic differentiation for bone tissue engineering applications. J Mater Sci Mater Med 30(2):1–10

    Article  Google Scholar 

  13. Athinarayanan J, Periasamy VS, Alshatwi AA (2020a) Simultaneous fabrication of carbon nanodots and hydroxyapatite nanoparticles from fish scale for biomedical applications. Mater Sci Eng C 117:111313

    Article  Google Scholar 

  14. Athinarayanan J, Alshatwi AA, Periasamy VS (2020b) Biocompatibility analysis of Borassus flabellifer biomass-derived nanofibrillated cellulose. Carbohydr Polym 235:115961

    Article  Google Scholar 

  15. Ben-Nissan B (2003) Natural bioceramics: From coral to bone and beyond. Curr Opin Solid State Mater Sci 7:283–288

    Article  Google Scholar 

  16. Bhattacharya D, Germinario LT, Winter WT (2008) Isolation, preparation and characterization of cellulose microfibers obtained from bagasse. Carbohydr Polym 73(3):371–377

    Article  Google Scholar 

  17. Carvalho J, Araújo J, Castro F (2011) Alternative low-cost adsorbent for water and wastewater decontamination derived from eggshell waste: an overview. Waste Biomass Valoriz 2(2):157–167

    Article  Google Scholar 

  18. Chandrasekaran M, Bahkali AH (2013) Valorization of date palm (Phoenix dactylifera) fruit processing by-products and wastes using bioprocess technology—review. Saudi J Biol Sci 20(2):105–120

    Article  Google Scholar 

  19. Duran N, Paula Lemes A, Seabra AB (2012) Review of cellulose nanocrystals patents: preparation, composites and general applications. Recent Pat Nanotechnol 6(1):16–28

    Article  Google Scholar 

  20. Gutiérrez-Prieto SJ, Fonseca LF, Sequeda-Castañeda LG, Díaz KJ, Castañeda LY, Leyva-Rojas JA, Salcedo-Reyes JC, Acosta AP (2019) Elaboration and biocompatibility of an eggshell-derived hydroxyapatite material modified with Si/PLGA for bone regeneration in dentistry. Int J Dentist 2019:5949232

    Article  Google Scholar 

  21. Haafiz MM, Hassan A, Zakaria Z, Inuwa IM (2014) Isolation and characterization of cellulose nanowhiskers from oil palm biomass microcrystalline cellulose. Carbohydr Polym 103:119–125

    Article  Google Scholar 

  22. Habte L, Shiferaw N, Mulatu D, Thenepalli T, Chilakala R, Ahn JW (2019) Synthesis of nano-calcium oxide from waste eggshell by sol-gel method. Sustainability 11(11):3196

    Article  Google Scholar 

  23. Herranen K, Lohman M (2015) U.S. Patent No. 9,018,189. U.S. Patent and Trademark Office, Washington, DC

  24. Ingole VH, Vuherer T, Maver U, Vinchurkar A, Ghule AV, Kokol V (2020) Mechanical properties and cytotoxicity of differently structured nanocellulose-hydroxyapatite based composites for bone regeneration application. Nanomaterials 10(1):25

    Article  Google Scholar 

  25. Jaafari SAAH, Athinarayanan J, Periasamy VS, Alshatwi AA (2020) Biogenic silica nanostructures derived from Sorghum bicolor induced osteogenic differentiation through BSP, BMP-2 and BMP-4 gene expression. Process Biochem 91:231–240

    Article  Google Scholar 

  26. Jie W, Yubao L (2004) Tissue engineering scaffold material of nano-apatite crystals and polyamide composite. Eur Polym J 40(3):509–515

    Article  Google Scholar 

  27. Johar N, Ahmad I, Dufresne A (2012) Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Ind Crop Prod 37(1):93–99

    Article  Google Scholar 

  28. Jorfi M, Foster EJ (2015) Recent advances in nanocellulose for biomedical applications. J Appl Polym Sci 132(14):41719

    Article  Google Scholar 

  29. Kumar P, Joshi L (2013) Pollution caused by agricultural waste burning and possible alternate uses of crop stubble: a case study of Punjab. In: Knowledge systems of societies for adaptation and mitigation of impacts of climate change. Springer, Berlin/Heidelberg, pp 367–385

    Chapter  Google Scholar 

  30. Laschke MW, Strohe A, Scheuer C, Eglin D, Verrier S, Alini M, Pohlemann T, Menger MD (2009) In vivo biocompatibility and vascularization of biodegradable porous polyurethane scaffolds for tissue engineering. Acta Biomater 5(6):1991–2001

    Article  Google Scholar 

  31. Laufenberg G, Kunz B, Nystroem M (2003) Transformation of vegetable waste into value added products: (A) the upgrading concept; (B) practical implementations. Bioresour Technol 87(2):167–198

    Article  Google Scholar 

  32. Liu X, Smith LA, Hu J, Ma PX (2009) Biomimetic nanofibrous gelatin/apatite composite scaffolds for bone tissue engineering. Biomaterials 30(12):2252–2258

    Article  Google Scholar 

  33. Lu P, Hsieh YL (2012) Cellulose isolation and core-shell nanostructures of cellulose nanocrystals from chardonnay grape skins. Carbohydr Polym 87(4):2546–2553

    Article  Google Scholar 

  34. Mallaki M, Fatehi R (2014) Design of a biomass power plant for burning date palm waste to cogenerate electricity and distilled water. Renew Energy 63:286–291

    Article  Google Scholar 

  35. Mueller S, Weder C, Foster EJ (2014) Isolation of cellulose nanocrystals from pseudostems of banana plants. RSC Adv 4(2):907–915

    Article  Google Scholar 

  36. Murugan R, Sampath Kumar TS, Panduranga Rao K (2002) Fluorinated bovine hydroxyapatite: preparation and characterization. Mater Lett 57:429–433

    Article  Google Scholar 

  37. Oushabi A, Sair S, Abboud Y, Tanane O, El Bouari A (2015) Natural thermal-insulation materials composed of renewable resources: characterization of local date palm fibers (LDPF). J Mater Environ Sci 6(12):3395–3402

    Google Scholar 

  38. Periasamy VS, Athinarayanan J, Al-Hadi AM, Al Juhaimi F, Mahmoud MH, Alshatwi AA (2015) Identification of titanium dioxide nanoparticles in food products: induce intracellular oxidative stress mediated by TNF and CYP1A genes in human lung fibroblast cells. Environ Toxicol Pharmacol 39(1):176–186

    Article  Google Scholar 

  39. Periasamy VS, Athinarayanan J, Alshatwi AA (2016) Anticancer activity of an ultrasonic nanoemulsion formulation of Nigella sativa L. essential oil on human breast cancer cells. Ultrason Sonochem 31:449–455

    Article  Google Scholar 

  40. Ravindran R, Jaiswal AK (2016) Exploitation of food industry waste for high-value products. Trends Biotechnol 34(1):58–69

    Article  Google Scholar 

  41. Rebouillat S, Pla F (2013) State of the art manufacturing and engineering of nanocellulose: a review of available data and industrial applications. J Biomater Nanobiotechnol 4(02):165–188

    Article  Google Scholar 

  42. Saini JK, Saini R, Tewari L (2015) Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3 Biotech 5(4):337–353

    Article  Google Scholar 

  43. Sait HH, Hussain A, Salema AA, Ani FN (2012) Pyrolysis and combustion kinetics of date palm biomass using thermogravimetric analysis. Bioresour Technol 118:382–389

    Article  Google Scholar 

  44. Siddharthan A, Kumar TS, Seshadri SK (2009) Synthesis and characterization of nanocrystalline apatites from eggshells at different Ca/P ratios. Biomed Mater 4(4):045010

    Article  Google Scholar 

  45. Tuck CO, Pérez E, Horváth IT, Sheldon RA, Poliakoff M (2012) Valorization of biomass: deriving more value from waste. Science 337(6095):695–699

    Article  Google Scholar 

  46. Wei H, Rodriguez K, Renneckar S, Vikesland PJ (2014) Environmental science and engineering applications of nanocellulose-based nanocomposites. Environ Sci Nano 1(4):302–316

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support of the National Plan of Science, Technology and Innovation (MAARIFAH), King Abdulaziz City for Science and Technology, Kingdom of Saudi Arabia. Award Number : 15-NAN5012-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali A. Alshatwi.

Ethics declarations

Competing interest

The authors declare no competing interests.

Ethical approval and consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Athinarayanan, J., Periasamy, V.S. & Alshatwi, A.A. Fabrication of cellulose nanocrystal-decorated hydroxyapatite nanostructures using ultrasonication for biomedical applications. Biomass Conv. Bioref. 13, 5861–5874 (2023). https://doi.org/10.1007/s13399-021-01481-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-01481-2

Keywords

Navigation