Skip to main content

Advertisement

Log in

Soil microbial biomass phosphorus can serve as an index to reflect soil phosphorus fertility

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

A Correction to this article was published on 23 April 2021

This article has been updated

Abstract

The effect and relative contributions of C and P inputs on soil microbial biomass P (MBP) accumulation were studied in three long-term soil fertility experiments with various soil and climate characteristics at Qiyang, Yangling, and Wulumuqi. The maximum of soil MBP in all three sites was 47.8 mg P kg-1. The MBP accumulated per unit in soil (mg P kg-1 soil) was correlated with a 4.91 mg kg-1 increase in Olsen P. For each unit increase in P surplus (kg P ha-1), manure C (kg C ha-1), and stubble C (kg C ha-1), MBP accumulation increased by 330, 3.7, and 13 units (μg P kg-1 soil), respectively. The soil MBP was positively correlated with crop yield and P uptake, making the soil MBP a useful soil P fertility index. The critical levels of the soil MBP pool were 140 kg ha-1, 57–62 kg ha-1, and 33–35 kg ha-1 in acidic red soil, loessial soil, and grey desert soil, respectively. This is the first report to establish a quantitative index of soil fertility based on the soil MBP pool. Our findings demonstrate that C input is a good driver of soil MBP accumulation. Integration of the soil MBP as an index of soil P fertility into agricultural P management is useful to help manage mineral P fertilizers as part of sustainable agricultural practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

References

  • Achat DL, Augusto L, Bakker MR, Gallet-Budynek A, Morel C (2012) Microbial processes controlling P availability in forest spodosols as affected by soil depth and soil properties. Soil Biol Biochem 44:39–48

    Article  CAS  Google Scholar 

  • Almeida DS, Menezes-Blackburn D, Zhang H, Haygarth PM, Rosolem CA (2019) Phosphorus availability and dynamics in soil affected by long-term ruzigrass cover crop. Geoderma 337:434–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ayaga G, Todd A, Brookes PC (2006) Enhanced biological cycling of phosphorus increases its availability to crops in low-input sub-Saharan farming systems. Soil Biol Biochem 38:81–90

    Article  CAS  Google Scholar 

  • Barber SA (1979) Corn residue management and soil organic matter. Agron J 71:625–627

    Article  Google Scholar 

  • Bardgett RD, van der Putten WH (2014) Belowground biodiversity and ecosystem functioning. Nature 515:505–511

    Article  CAS  PubMed  Google Scholar 

  • Bender SF, Wagg C, van der Heijden MGA (2016) An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability. Trends Ecol Evol 31:440–452

    Article  PubMed  Google Scholar 

  • Blackwell MSA, Brookes RC, de la Fuente-Martinez N, Gordon H, Murray PJ, Snars KE, Williams JK, Bol R, Haygarth PM (2010) Phosphorus solubilization and potential transfer to surface waters from the soil microbial biomass following drying-rewetting and freezing-thawing. Adv Agron 106:1–35

    Article  CAS  Google Scholar 

  • Bolinder MA, Angers DA, Dubuc JP (1997) Estimating shoot to root ratios and annual carbon inputs in soils for cereal crops. Agric Ecosyst Environ 63:61–66

    Article  CAS  Google Scholar 

  • Bolinder MA, Angers DA, Giroux M, Laverdiere MR (1999) Estimating C inputs retained as soil organic matter from corn (Zea mays L.). Plant Soil 215:85–91

    Article  CAS  Google Scholar 

  • Brookes PC (2001) The soil microbial biomass: concept, measurement and applications in soil ecosystem research. Microbes Environ 16:131–140

    Article  Google Scholar 

  • Brookes PC, Powlson DS, Jenkinson DS (1982) Measurement of microbial biomass phosphorus in soil. Soil Biol Biochem 14:319–329

    Article  CAS  Google Scholar 

  • Bünemann EK, Steinebrunner F, Smithson PC, Frossard E, Oberson A (2004) Phosphorus dynamics in a highly weathered soil as revealed by isotopic labelling techniques. Soil Sci Soc Am J 68:1645–1655

    Article  Google Scholar 

  • Bünemann EK, Smernik RJ, Marschner P, McNeill AM (2008) Microbial synthesis of organic and condensed forms of phosphorus in acid and calcareous soils. Soil Biol Biochem 40:932–946

    Article  Google Scholar 

  • Bünemann EK, Keller B, Hoop D, Jud K, Boivin P, Frossard E (2013) Increased availability of phosphorus after drying and rewetting of a grassland soil: processes and plant use. Plant Soil 370:511–526

    Article  Google Scholar 

  • Bünemann EK, Bongiorno G, Bai Z, Creamer RE, De Deyn G, de Goede R, Fleskens L, Geissen V, Kuyper TW, Mäder P, Pulleman M, Sukkel W, van Groenigen JW, Brussaard L (2018) Soil quality—a critical review. Soil Biol Biochem 120:105–125

    Article  Google Scholar 

  • Cai Z, Wang B, Xu M, Zhang H, He X, Zhang L, Gao S (2015) Intensified soil acidification from chemical N fertilization and prevention by manure in an 18-year field experiment in the red soil of southern China. J Soils Sediments 15:260–270

    Article  CAS  Google Scholar 

  • Chen GC, He ZL, Huang CY (2000) Microbial biomass phosphorus and its significance in predicting phosphorus availability in red soils. Commun Soil Sci Plant Anal 31:655–667

    Article  CAS  Google Scholar 

  • Chen CR, Condron LM, Davis MR, Sherlock RR (2003) Seasonal changes in soil phosphorus and associated microbial properties under adjacent grassland and forest in New Zealand. For Ecol Manag 177:539–557

    Article  Google Scholar 

  • Cleveland CC, Liptzin D (2007) C:N:P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass? Biogeochemistry 85:235–252

    Article  Google Scholar 

  • Dai Z, Liu G, Chen H, Chen C, Wang J, Ai S, Wei D, Li D, Ma B, Tang C, Brookes PC, Xu J (2020) Long-term nutrient inputs shift soil microbial functional profiles of phosphorus cycling in diverse agroecosystems. ISME J 14:757–770

    Article  CAS  PubMed  Google Scholar 

  • Darch T, Giles CD, Blackwell MSA, George TS, Brown LK, Menezes-Blackburn D, Shand CA, Stutter MI, Lumsdon DG, Mezeli MM, Wendle R, Zhang H, Wearing C, Cooper P, Haygarth PM (2018) Inter- and intra-species intercropping of barley cultivars and legume species, as affected by soil phosphorus availability. Plant Soil 427:125–138

    Article  CAS  PubMed  Google Scholar 

  • Dennis PG, Miller AJ, Hirsch PR (2010) Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? FEMS Microbiol Ecol 72:313–327

    Article  CAS  PubMed  Google Scholar 

  • Ehlers K, Bakken LR, Frostegård Å, Frossard E, Bünemann EK (2010) Phosphorus limitation in a Ferralsol: Impact on microbial activity and cell internal P pools. Soil Biol Biochem 42:558–566

    Article  CAS  Google Scholar 

  • George TS, Giles CD, Menezes-Blackburn D, Condron LM, Gama-Rodrigues AC, Jaisi D, Lang F, Neal AL, Stutter MI, Almeida DS, Bol R, Cabugao KG, Celi L, Cotner JB, Feng G, Goll DS, Hallama M, Krueger J, Plassard C, Rosling A, Darch T, Fraser T, Giesler R, Richardson AE, Tamburini F, Shand CA, Lumsdon DG, Zhang H, Blackwell MSA, Wearing C, Mezeli MM, Almås ÅR, Audette Y, Bertrand I, Beyhaut E, Boitt G, Bradshaw N, Brearley CA, Bruulsema TW, Ciais P, Cozzolino V, Duran PC, Mora ML, de Menezes AB, Dodd RJ, Dunfield K, Engl C, Frazão JJ, Garland G, González Jiménez JL, Graca J, Granger SJ, Harrison AF, Heuck C, Hou EQ, Johnes PJ, Kaiser K, Kjær HA, Klumpp E, Lamb AL, Macintosh KA, Mackay EB, McGrath J, McIntyre C, McLaren T, Mészáros E, Missong A, Mooshammer M, Negrón CP, Nelson LA, Pfahler V, Poblete-Grant P, Randall M, Seguel A, Seth K, Smith AC, Smits MM, Sobarzo JA, Spohn M, Tawaraya K, Tibbett M, Voroney P, Wallander H, Wang L, Wasaki J, Haygarth PM (2018) Organic phosphorus in the terrestrial environment: a perspective on the state of the art and future priorities. Plant Soil 427:191–208

    Article  CAS  Google Scholar 

  • Gichangi EM, Mnkeni PNS, Brookes PC (2009) Effects of goat manure and inorganic phosphate addition on soil inorganic and microbial biomass phosphorus fractions under laboratory incubation conditions. Soil Sci Plant Nutr 55:764–771

    Article  CAS  Google Scholar 

  • Huang J, Hu B, Qi K, Chen W, Pang X, Bao W, Tian G (2016) Effects of phosphorus addition on soil microbial biomass and community composition in a subalpine spruce plantation. Eur J Soil Biol 72:35–41

    Article  CAS  Google Scholar 

  • Isaac RA, Johnson WC (1976) Determination of total nitrogen in plant tissue, using a block digestor. J Assoc Off Anal Chem 59:98–100

    CAS  Google Scholar 

  • Kalembasa SJ, Jenkinson DS (1973) A comparative study of titrimetric and gravimetric methods for the determination of organic carbon in soil. J Sci Food Agric 24:1085–1090

    Article  CAS  Google Scholar 

  • Khan KS, Joergensen RG (2019) Stoichiometry of the soil microbial biomass in response to amendments with varying C/N/P/S ratios. Biol Fertil Soils 55:265–274

    Article  CAS  Google Scholar 

  • Khan A, Lu G, Ayaz M, Zhang H, Wang R, Lv F, Yang X, Sun B, Zhang S (2018) Phosphorus efficiency, soil phosphorus dynamics and critical phosphorus level under long-term fertilization for single and double cropping systems. Agric Ecosyst Environ 256:1–11

    Article  CAS  Google Scholar 

  • Kouno K, Wu J, Brookes P (2002) Turnover of biomass C and P in soil following incorporation of glucose or ryegrass. Soil Biol Biochem 34:617–622

    Article  CAS  Google Scholar 

  • Kuo S (1996) Phosphorus. In: Sparks DL (ed) Methods of soil analysis: Chemical methods, part 3. Soil Science Society of America, Madison, pp 869–921

    Google Scholar 

  • Li B, Boiarkina I, Yu W, Huang HM, Munir T, Wang GQ, Young BR (2019) Phosphorous recovery through struvite crystallization: challenges for future design. Sci Total Environ 648:1244–1256

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Are KS, Huang Z, Guo H, Wei L, Abegunrin TP, Gu MH, Qin Z (2020) Particulate N and P exports from sugarcane growing watershed are more influenced by surface runoff than fertilization. Agric Ecosyst Environ 302:107087

    Article  CAS  Google Scholar 

  • Liebisch F, Keller F, Huguenin-Elie O, Frossard E, Oberson A, Bünemann EK (2014) Seasonal dynamics and turnover of microbial phosphorus in a permanent grassland. Biol Fertil Soils 50:465–475

    Article  CAS  Google Scholar 

  • Liu J, Liu H, Huang S, Yang X, Wang B, Li X, Ma Y (2010) Nitrogen efficiency in long-term wheat–maize cropping systems under diverse field sites in China. Field Crop Res 118:145–151

    Article  Google Scholar 

  • Liu L, Gundersen P, Zhang T, Mo J (2012) Effects of phosphorus addition on soil microbial biomass and community composition in three forest types in tropical China. Soil Biol Biochem 44:31–38

    Article  Google Scholar 

  • Ma J, Liu Y, He W, He P, Haygarth PM, Surridge BWJ, Lei Q, Zhou W (2018) The long-term soil phosphorus balance across Chinese arable land. Soil Use Manag 34:306–315

    Article  Google Scholar 

  • Macklon AES, Grayston SJ, Shand CA, Sim A, Sellars S, Ord BG (1997) Uptake and transport of phosphorus by Agrostis capillaris seedlings from rapidly hydrolysed organic sources extracted from 32P-labelled bacterial cultures. Plant Soil 190:163–167

    Article  CAS  Google Scholar 

  • Malik MA, Khan KS, Marschner P, Fayyaz-ul-Hassan (2013) Microbial biomass, nutrient availability and nutrient uptake by wheat in two soils with organic amendments. J Soil Sci Plant Nutr 13:955–966

    Google Scholar 

  • McLaughlin MJ, McBeath TM, Smernik R, Stacey SP, Ajiboye B, Guppy C (2011) The chemical nature of P accumulation in agricultural soils-implications for fertiliser management and design: an Australian perspective. Plant Soil 349:69–87

    Article  CAS  Google Scholar 

  • Ocio JA, Brookes PC (1990) An evaluation of methods for measuring the microbial biomass in soils following recent additions of wheat straw and the characterization of the biomass that develops. Soil Biol Biochem 22:685–694

    Article  Google Scholar 

  • Oehl F, Oberson A, Probst M, Fliessbach A, Roth H-R, Frossard E (2001) Kinetics of microbial phosphorus uptake in cultivated soils. Biol Fertil Soils 34:31–41

    Article  Google Scholar 

  • Paterson E (2003) Importance of rhizodeposition in the coupling of plant and microbial productivity. Eur J Soil Sci 54:741–750

    Article  Google Scholar 

  • Perrott KW, Sarathchandra SU, Waller JE (1990) Seasonal storage and release of phosphorus and potassium by organic matter and the microbial biomass in a high-producing pastoral soil. Aust J Soil Res 28:593–608

    Article  CAS  Google Scholar 

  • Perrott KW, Sarathchandra SU, Dow BW (1992) Seasonal and fertilizer effects on the organic cycle and microbial biomass in a hill country soil under pasture. Aust J Soil Res 30:383–394

    Article  CAS  Google Scholar 

  • Ren F, Sun N, Xu M, Zhang X, Wu L, Xu M (2019) Changes in soil microbial biomass with manure application in cropping systems: a meta-analysis. Soil Tillage Res 194:104291

    Article  Google Scholar 

  • Richardson AE, Simpson RJ (2011) Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiol 156:989–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339

    Article  CAS  Google Scholar 

  • Ritchie SW, Hanway JJ, Benson GO (1992) How a corn plant develops: Specialty Report No. 48. Iowa State Extension Service, p 21

  • Roberts WM, Matthews RA, Blackwell MSA, Peukert S, Collins AL, Stutter MI, Haygarth PM (2013) Microbial biomass phosphorus contributions to phosphorus solubility in riparian vegetated buffer strip soils. Biol Fertil Soils 49:1237–1241

    Article  CAS  Google Scholar 

  • Rousk J, Bååth E, Göransson H, Fransson AM (2007) Assessing plant microbial competition for P-33 using uptake into phospholipids. Appl Soil Ecol 36:233–237

    Article  Google Scholar 

  • Saini VK, Bhandari SC, Tarafdar JC (2004) Comparison of crop yield, soil microbial biomass C, N, and P, N-fixation, nodulation and mycorrhizal infection in inoculated and non-inoculated sorghum and chickpea crops. Field Crop Res 89:39–47

    Article  Google Scholar 

  • Saunders OE, Fortuna A-M, Harrison JH, Cogger CG, Whitefield E, Green T (2012) Gaseous nitrogen and bacterial responses to raw and digested dairy manure applications in incubated soil. Environ. Sci Technol 46:11684–11692

    Article  CAS  Google Scholar 

  • Schneider KD, Voroney RP, Lynch DH, Oberson A, Frossard E, Bünemann EK (2017) Microbially-mediated P fluxes in calcareous soils as a function of water-extractable phosphate. Soil Biol Biochem 106:51–60

    Article  CAS  Google Scholar 

  • Shi Y, Laland R, Hamel C, Ziadi N, Gagnon B, Hu Z (2013) Seasonal variation of microbial biomass, activity, and community structure in soil under different tillage and phosphorus management practices. Biol Fertil Soils 49:803–818

    Article  CAS  Google Scholar 

  • Singh H, Singh KP (1993) Effect of residue placement and chemical fertilizer on soil microbial biomass under tropical dryland cultivation. Biol Fertil Soils 16:275–281

    Article  CAS  Google Scholar 

  • Spohn M, Kuzyakov Y (2013) Phosphorus mineralization can be driven by microbial need for carbon. Soil Biol Biochem 61:69–75

    Article  CAS  Google Scholar 

  • Spohn M, Widdig M (2017) Turnover of carbon and phosphorus in the microbial biomass depending on phosphorus availability. Soil Biol Biochem 113:53–59

    Article  CAS  Google Scholar 

  • Sugito T, Yoshida K, Takebe M, Shinano T, Toyota K (2010) Soil microbial biomass phosphorus as an indicator of phosphorus availability in a Gleyic Andosol. Soil Sci Plant Nutr 56:390–398

    Article  CAS  Google Scholar 

  • Tang X, Bernard L, Brauman A, Daufresne T, Deleporte P, Desclaux D, Souche G, Placella SA, Hinsinger P (2014) Increase in microbial biomass and phosphorus availability in the rhizosphere of intercropped cereal and legumes under field conditions. Soil Biol Biochem 75:86–93

    Article  CAS  Google Scholar 

  • Thomas RL, Sheard RW, Moyer JR (1967) Comparison of conventional and automated procedures for nitrogen, phosphorus, and potassium analysis of plant material using a single digestion. Agron J 59:240–243

    Article  CAS  Google Scholar 

  • Tong X, Xu M, Wang X, Bhattacharyya R, Zhang W, Cong R (2014) Long-term fertilization effects on organic carbon fractions in a red soil of China. Catena 113:251–259

    Article  CAS  Google Scholar 

  • Turner BL, Haygarth PM (2001) Phosphorus solubilization in rewetted soils. Nature 411:258

    Article  CAS  PubMed  Google Scholar 

  • Turner BL, Wright SJ (2014) The response of microbial biomass and hydrolytic enzymes to a decade of nitrogen, phosphorus, and potassium addition in a lowland tropical rain forest. Biogeochemistry 117:115–130

    Article  CAS  Google Scholar 

  • van der Heijden MGA, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    Article  PubMed  Google Scholar 

  • Wang J, Wang X, Xu M, Feng G, Zhang W, Yang X, Huang S (2015) Contributions of wheat and maize residues to soil organic carbon under long-term rotation in north China. Sci Rep 5:11409

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei X, Zhu Z, Liu Y, Luo Y, Deng Y, Xu X, Liu S, Richter A, Shibistova O, Guggenberger G, Wu J, Ge T (2020) C:N:P stoichiometry regulates soil organic carbon mineralization and concomitant shifts in microbial community composition in paddy soil. Biol Fertil Soils 56:1093–1107

    Article  Google Scholar 

  • Xie Z, Tian C (2010) Effects of water and nitrogen on root morphological characteristics and biomass distribution under film drip Irrigation. J Arid Land Res Environ 24:138–143

    Google Scholar 

  • Xu X, Thornton PE, Post WM (2013) A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems. Glob Ecol Biogeogr 22:737–749

    Article  Google Scholar 

  • Yang X, Zhou S, Sun B, Wang B, Zhang S, Gu Q (2010) Microbial properties of a loess soil as affected by various nutrient management practices in the loess plateau of China. Commun Soil Sci Plant Anal 41:956–967

    Article  CAS  Google Scholar 

  • Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Res 14:415–421

    Article  Google Scholar 

  • Zhang W, Xu M, Wang B, Wang X (2009) Soil organic carbon, total nitrogen and grain yields under long-term fertilizations in the upland red soil of southern China. Nutr Cycl Agroecosyst 84:59–69

    Article  CAS  Google Scholar 

  • Zhang L, Ding X, Chen S, He X, Zhang F, Feng G (2014) Reducing carbon: phosphorus ratio can enhance microbial phytin mineralization and lessen competition with maize for phosphorus. J Plant Interact 9:850–856

    Article  CAS  Google Scholar 

  • Zhang L, Xu M, Liu Y, Zhang F, Hodge A, Feng G (2016) Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate-solubilizing bacterium. New Phytol 210:1022–1032

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Peng Y, Zhou J, George TS, Feng G (2020) Addition of fructose to the maize hyphosphere increases phosphatase activity by changing bacterial community structure. Soil Biol Biochem 142:107724

    Article  CAS  Google Scholar 

  • Zhao B, Li X, Li X, Shi X, Huang S, Wang B, Zhu P, Yang X, Liu H, Chen Y, Poulton P, Powlson D, Todd A, Payne R (2010) Long-term fertilizer experiment network in China: crop yields and soil nutrient trends. Agron J 102:216–230

    Article  CAS  Google Scholar 

  • Zhong WH, Cai ZC (2007) Long-term effects of inorganic fertilizers on microbial biomass and community functional diversity in a paddy soil derived from quaternary red clay. Appl Soil Ecol 36:84–91

    Article  Google Scholar 

Download references

Funding

This study is financially supported by the National Natural Science Foundation of China (U1703232) and the National Key R&D Program of China (2017YFD0200200).

Author information

Authors and Affiliations

Authors

Contributions

Gu Feng and Minggang Xu designed the study. Yisheng Duan, Weige Huo, Xueyun Yang, Xihe Wang, and Boren Wang performed the sampling and analysis. Yi Peng and Gu Feng prepared data set and performed statistical analyses. Yi Peng, Gu Feng, Martin S.A. Blackwell, and Minggang Xu contributed to statistical interpretation of results and wrote the manuscript. Gu Feng contributed to revise the manuscript and provided financial support. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Minggang Xu or Gu Feng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The first corresponding author should have been Gu Feng and second corresponding author is Minggang Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Y., Duan, Y., Huo, W. et al. Soil microbial biomass phosphorus can serve as an index to reflect soil phosphorus fertility. Biol Fertil Soils 57, 657–669 (2021). https://doi.org/10.1007/s00374-021-01559-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-021-01559-z

Keywords

Navigation