Skip to main content
Log in

Computer-Assisted Decision-Making System of Optimal Control over the Energy and Resource Efficiency of a Chemical Energotechnological System for Processing Apatite–Nepheline Ore Wastes

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

Some multilevel decision-making algorithms have been developed to provide optimal control over the energy and resource efficiency and environmental safety of a chemical energotechnological system designed for processing apatite–nepheline ore wastes and composed of a grinder, a granulator, a roasting conveyor machine, and an electric ore-smelting furnace (EOSF). The mutually dependent set of parameters of wet granules at the outlet from the tray granulator, roasted granules at the outlet from the roasting conveyor machine, and granules loaded into the EOSF and the characteristics of initial finely dispersed technogenic raw materials is taken into account alongside the effect of these waste-processing indices on the quality and purity of the finished product, namely, yellow phosphorus. Descriptive and mathematical formulations are given for the problem of optimal control over the energy and resource efficiency of a complex multistage chemical energotechnological system for processing apatite–nepheline ore wastes with the production of yellow phosphorus with consideration for the spatial and temporal interdependence between the chemical and energotechnological processes occurring in this system. One complex energy and resource efficiency criterion is the prime cost of electrical and heat energies, water, and coke spent on processing apatite–nepheline ore wastes in the considered chemical energotechnological system. It has been established that the optimal system functioning regime intensifies all the chemical energotechnological processes, decreases the energy and coke consumption, and increases the quality and purity of the finished product (i.e., yellow phosphorus). This study has resulted in a solution for the urgent scientific and practical problem of improving the energy and resource efficiency and environmental safety of a complex system for processing technogenic apatite–nepheline ore wastes via intensifying the chemical energotechnological processes occurring in this system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Shvydkii, V.S., Fatkhutdinov, A.R., Devyatykh, E.A., Devyatykh, T.O., and Spirin, N.A., On the mathematical modeling of layered metallurgical furnaces and units: Report II, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., 2018, vol. 60, no. 1, pp. 19–23.

    Google Scholar 

  2. Leont’ev, L.I., Grigorovich, K.V., and Kostina, M.V., The development of new metallurgical materials and technologies. Part 1, Steel Transl., 2016, vol. 46, no. 1, pp. 6–15. https://doi.org/10.3103/S096709121601006X

    Article  Google Scholar 

  3. Panchenko, S.V. and Shirokikh, T.V., Thermophysical processes in the burden zone of submerged arc furnaces, Theor. Found. Chem. Eng., 2014, vol. 48, no. 1, pp. 77–81. https://doi.org/10.1134/S0040579514010096

    Article  CAS  Google Scholar 

  4. Bobkov, V.I., Fedulov, A.S., Dli, M.I., Meshalkin, V.P., and Morgunova, E.V., Scientific basis of effective energy resource use and environmentally safe processing of phosphorus-containing manufacturing waste of ore-dressing barrows and processing enterprises, Clean Technol. Environ. Policy, 2018, vol. 20, no. 10, p. 2209.

    Article  CAS  Google Scholar 

  5. Gurin, I.A., Lavrov, V.V., Spirin, N.A., and Nikitin, A.G., Web technology in automated information and modeling systems for metallurgical processes, Steel Transl., 2017, vol. 47, no. 7, pp. 463–468. https://doi.org/10.3103/S096709121707004X

    Article  Google Scholar 

  6. Meshalkin, V., Bobkov, V., Dli, M., and Dovì, V., Optimization of energy and resource efficiency in a multistage drying process of phosphate pellets, Energies, 2019, vol. 12, no. 17, p. 3376.

    Article  CAS  Google Scholar 

  7. Bobkov, V.I., Fedulov, A.S., Dli, M.I., and Meshalkin, V.P., Studying the chemical and energy engineering process of the strengthening calcination of phosphorite pellets containing free carbon, Theor. Found. Chem. Eng., 2018, vol. 52, no. 4, pp. 525–532. https://doi.org/10.1134/S0040579518030041

    Article  CAS  Google Scholar 

  8. Leont’ev, L.I., Physicochemical characteristics of the integrated processing of iron-bearing ores and technogenic wastes, XX Mendeleevskii s"ezd po obshchei i prikladnoi khimii. Tezisy dokladov v 5 tomakh (XX Mendeleev Congress on General and Applied Chemistry: Abstracts of Papers, 5 vols.), Yekaterinburg: Ural. Otd., Ross. Akad. Nauk, 2016, p. 92.

  9. Meshalkin, V.P., Bobkov, V.I., Dli, M.I., Belozerskii, A.Yu., and Men’shova, I.I., Optimizing the energy efficiency of a local process of multistage drying of a moving mass of phosphorite pellets, Dokl. Chem., 2019, vol. 486, no. 1, pp. 144–148. https://doi.org/10.1134/S0012500819050070

    Article  CAS  Google Scholar 

  10. Meshalkin, V.P., Puchkov, A.Yu., Dli, M.I., and Bobkov, V.I., Generalized model for engineering and controlling a complex multistage chemical energotechnological system for processing apatite-nepheline ore wastes, Theor. Found. Chem. Eng., 2019, vol. 53, no. 4, pp. 463–471. https://doi.org/10.1134/S0040579519040237

    Article  CAS  Google Scholar 

  11. Meshalkin, V.P., Bobkov, V.I., and Dli, M.I., Automated decision support system in the energy- and resource-efficiency management of a chemical-energy engineering system for roasting phosphorite pellets, Theor. Found. Chem. Eng., 2019, vol. 53, no. 6, pp. 960–966. https://doi.org/10.1134/S0040579519060095

    Article  CAS  Google Scholar 

  12. Elgharbi, S., Horchani-Naifer, K., and Férid, M., Investigation of the structural and mineralogical changes of Tunisian phosphorite during calcinations, J. Therm. Anal. Calorim., 2015, vol. 119, no. 1, pp. 265–271. https://doi.org/10.1007/s10973-014-4132-5

    Article  CAS  Google Scholar 

  13. Yang, X.-F., Mechanism of roasting and agglomeration on the pellets produced by blended iron ore fines of hematite and magnetite, J. Iron Steel Res., 2010, vol. 22, no. 2, p. 6.

    CAS  Google Scholar 

  14. Montastruc, L., Azzaro-Pantel, C., Biscans, B., Cabassud, M., and Domenech, S., A thermochemical approach for calcium phosphate precipitation modeling in a pellet reactor, Chem. Eng. J., 2003, vol. 94, no. 1, pp. 41–50. https://doi.org/10.1016/S1385-8947(03)00044-5

    Article  CAS  Google Scholar 

  15. Luis, P. and Van der Bruggen, B., Exergy analysis of energy-intensive production processes: Advancing towards a sustainable chemical industry, J. Chem. Technol. Biotechnol., 2014, vol. 89, no. 9, pp. 1288–1303. https://doi.org/10.1002/jctb.4422

    Article  CAS  Google Scholar 

  16. Fan, X.-H., Gan, M., Jiang, T., Yuan, L.-S., and Chen, X.-L., Influence of flux additives on iron ore oxidized pellets, J. Cent. South Univ. Technol. (Engl. Ed.), 2010, vol. 17, no. 4, pp. 732–737. https://doi.org/10.1007/s11771-010-0548-7

  17. Chen, D., Zhu, D.-Q., and Chen, Y., Preparation of prereduced pellets by pyrite cinder containing nonferrous metals with high temperature chloridizing-reduction roasting technology, ISIJ Int., 2014, vol. 54, no. 10, pp. 2162–2168. https://doi.org/10.2355/isijinternational.54.2162

    Article  CAS  Google Scholar 

  18. Zainullin, L.A., Druzhinin, G.M., and Butkarev, A.A., Innovative developments at OAO VNIIMT for energy saving and environmental protection in metallurgy, Chern. Metall., 2014, no. 7 (1375), p. 79.

  19. Abzalov, V.M., Bragin, V.V., Klein, V.I., and Solodukhin, A.A., Efficiency of drying zones in roasting machines, Steel Transl., 2008, vol. 38, no. 12, pp. 1008–1011. https://doi.org/10.3103/S0967091208120164

    Article  Google Scholar 

  20. Melamud, S.G. and Yur’ev, B.P., Oxidation of iron ore at moderate and high temperatures, Steel Transl., 2016, vol. 46, no. 6, pp. 384–389. https://doi.org/10.3103/S0967091216060085

    Article  Google Scholar 

  21. Bokovikov, B.A., Bragin, V.V., and Shvydkii, V.S., Role of the thermal-inertia zone in conveyer roasting machines, Steel Transl., 2014, vol. 44, no. 8, pp. 595–601. https://doi.org/10.3103/S096709121408004X

    Article  Google Scholar 

  22. Bragin, V.V., Bokovikov, B.A., Naidich, M.I., Gruzdev, A.I., and Shvydkii, V.S., Relation between the productivity and fuel consumption in roasting machines, Steel Transl., 2014, vol. 44, no. 8, pp. 590–594. https://doi.org/10.3103/S0967091214080051

    Article  Google Scholar 

  23. Solodukhin, A.A., Bokovikov, B.A., and Spirin, N.A., Decreasing the overwetting of pellets in the drying zone of a conveyer roasting machine, Stal’, 2014, no. 8, p. 14.

  24. Bragin, V.V., Bokovikov, B.A., Naidich, M.I., Gruzdev, A.I., and Shvydkii, V.S., Relation between the productivity and fuel consumption in roasting machines, Steel Transl., 2014, vol. 44, no. 8, pp. 590–594. https://doi.org/10.3103/S0967091214080051

    Article  Google Scholar 

  25. Pavlovets, V.M. and Gerasimuk, A.V., Specific features of the movement of a nucleus of complex shape on the pelletizing disk in the production of iron-ore pellets, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., 2018, vol. 61, no. 2, p. 87.

    CAS  Google Scholar 

  26. Akberdin, A.A., Kim, A.S., and Sultangaziev, R.B., Experiment planning in the simulation of industrial processes, Steel Transl., 2018, vol. 48, no. 9, pp. 573–577. https://doi.org/10.3103/S0967091218090024

    Article  Google Scholar 

  27. Yur’ev, B.P. and Gol’tsev, V.A., Variation in the equivalent voidage of a bed of pellets along the length of a roasting machine, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., 2018, vol. 60, no. 2, pp. 116–123.

    Google Scholar 

  28. Shvydkii, V.S., Yaroshenko, Yu.G., Spirin, N.A., and Lavrov, V.V., A mathematical model for the roasting of ore–coal pellets in a conveyer machine, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., 2018, vol. 60, no. 4, p. 329.

    Google Scholar 

  29. Novichikhin, A.V. and Shorokhova, A.V., Systematic processing of iron-ore waste in mining regions, Steel Transl., 2017, vol. 47, no. 7, pp. 456–462. https://doi.org/10.3103/S0967091217070105

    Article  Google Scholar 

  30. Yur’ev, B.P. and Gol’tsev, V.A., Thermophysical properties of Kachkanar titanomagnetite pellets, Steel Transl., 2016, vol. 46, no. 5, pp. 329–333. https://doi.org/10.3103/S0967091216050168

    Article  Google Scholar 

Download references

Funding

This work was performed as part of State Task no. FSWF-2020-0019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Bobkov.

Additional information

Translated by E. Glushachenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meshalkin, V.P., Bobkov, V.I., Dli, M.I. et al. Computer-Assisted Decision-Making System of Optimal Control over the Energy and Resource Efficiency of a Chemical Energotechnological System for Processing Apatite–Nepheline Ore Wastes. Theor Found Chem Eng 55, 62–69 (2021). https://doi.org/10.1134/S0040579521010103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579521010103

Keywords:

Navigation