Skip to main content
Log in

Synthesis and Application of Titania Nanotubes and Hydrous Manganese Oxide in Heavy Metal Removal from Aqueous Solution: Characterization, Comparative Study, and Adsorption Kinetics

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

Titania nanotube (TNT) and hydrous manganese oxide (HMO) nanoparticles were synthesized via hydrothermal synthesis and chemical coprecipitation methods, respectively, to investigate their performance in separation of Cd2+ and Cu2+. Furthermore, field emission scanning electron microscope, X-ray diffraction, and Fourier transform infrared spectroscopy analysis were used to examine the structural morphology, crystallinity, and composition of synthesized adsorbents and the calculated mean particle sizes of TNT and HMO nanoparticles were 26 and 7 nm, respectively, using the Scherrer equation. The applications of fabricated nanomaterials as an adsorbent for Cd2+ and Cu2+ decontamination were described via batch adsorption technique. The kinetic study of the adsorption process was performed at different initial concentrations of ions by two kinetic models: pseudo-first-order and pseudo-second-order models. Kinetic studies of the adsorption process revealed that the adsorption of Cd2+ and Cu2+ onto TNTs and HMOs is well described by pseudo-second-order kinetic model. According to the obtained equilibrium data for Cd2+ and Cu2+, the adsorption of metal ions was increased by increasing the initial concentrations of metal ions. It was further found that TNTs exhibited higher adsorption capacity for Cd2+ and Cu2+ than HMO nanoparticles so that at 200 mg/L of metal ion concentration, the maximum adsorption capacities of Cd2+ and Cu2+ were found as 49 and 47 mg/g, respectively, for sample TNT572 and 37 and 34 mg/g, respectively, for sample HMO1. However, the observed fast kinetics of adsorption revealed a high affinity between the heavy metal ions and the prepared nanostructured materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Wen, B., Li, L., Duan, Y., Zhang, Y., Shen, J., Xia, M., Wang, Y., Fang, W., and Zhu, X., Zn, Ni, Mn, Cr, Pb and Cu in soil-tea ecosystem: The concentrations, spatial relationship and potential control, Chemosphere, 2018, vol. 204, p. 92.

    Article  CAS  PubMed  Google Scholar 

  2. Tran, T.K., Chiu, K.F., Lin, C.Y., and Leu, H.J., Electrochemical treatment of wastewater: Selectivity of the heavy metals removal process, Int. J. Hydrogen Energy, 2017, vol. 42, no. 45, p. 27741.

    Article  CAS  Google Scholar 

  3. Krstić, V., Urošević, T., and Pešovski, B., A review on adsorbents for treatment of water and wastewaters containing copper ions, Chem. Eng. Sci., 2018, vol. 192, p. 273.

    Article  CAS  Google Scholar 

  4. Edition of the Drinking Water Standards and Health Advisories, EPA 882-S-12-001, Washington, DC: U.S. Environmental Protection Agency, 2012.

  5. Guidelines for Drinking-Water Quality, Geneva: World Health Organisation, 2011, 4th ed.

  6. Chen, Q., Yao, Y., Li, X., Lu, J., Zhou, J., and Huang, Z., Comparison of heavy metal removals from aqueous solutions by chemical precipitation and characteristics of precipitates, J. Water Process Eng., 2018, vol. 26, p. 289. https://doi.org/10.1016/j.jwpe.2018.11.003

    Article  Google Scholar 

  7. O’Connell, D.W., Birkinshaw, C., and O’Dwyer, T.F., Heavy metal adsorbents prepared from the modification of cellulose: A review, Bioresour. Technol., 2008, vol. 99, no. 15, p. 6709.

    Article  PubMed  CAS  Google Scholar 

  8. Abbas, M., Kaddour, S., and Trari, M., Kinetic and equilibrium studies of cobalt adsorption on apricot stone activated carbon, J. Ind. Eng. Chem. (Amsterdam, Neth.), 2014, vol. 20, no. 3, p. 745.

  9. Roh, H., Yu, M.R., Yakkala, K., Koduru, J.R., Yang, J.K., and Chang, Y.Y., Removal studies of Cd(II) and explosive compounds using buffalo weed biochar-alginate beads, J. Ind. Eng. Chem. (Amsterdam, Neth.), 2015, vol. 26, p. 226.

  10. Koduru, J.R., Chamg, Y.Y., and Kim, I.S., Low-cost Schizandra chinesis fruit peel for Co(II) removal from aqueous environment: Adsorption properties and mechanism, Asian J. Chem., 2014, vol. 26, no. 1, p. 289.

    Article  CAS  Google Scholar 

  11. Shannon, M.A., Bohn, P.W., Elimelech, M., Georgiadis, J.G., Mariñas, B.J., and Mayes, A.M., Science and technology for water purification in the coming decades, Nature, 2008, vol. 452, pp. 301–310. https://doi.org/10.1038/nature06599

    Article  CAS  PubMed  Google Scholar 

  12. Liu, Q., Zheng, T., Wang, P., Jiang, J., and Li, N., Adsorption isotherm, kinetic and mechanism studies of some substituted phenols on activated carbon fibers, Chem. Eng. J., 2009, vol. 157, nos. 2–3, p. 348.

    Article  CAS  Google Scholar 

  13. Gao, W., Majumder, M., Alemany, L., Tharangattu, N., Miguel, A., Bhebendra, K., and Pulickel, M., Engineered graphite oxide materials for application in water purification, ACS Appl. Mater. Interfaces, 2011, vol. 3, no. 6, p. 1821.

    Article  CAS  PubMed  Google Scholar 

  14. Hua, M., Zhang, S., Pan, B., Zhang, W., Lv, L., and Zhang, Q., Heavy metal removal from water/wastewater by nanosized metal oxides: A review, J. Hazard. Mater., 2012, vols. 211–212, p. 317.

    Article  PubMed  CAS  Google Scholar 

  15. Hakami, O., Zhang, Y., and Banks, C.J., Thiolfunctionalised mesoporous silica-coated magnetite nanoparticles for high efficiency removal and recovery of Hg from water, Water Res., 2012, vol. 46, no. 12, p. 3913.

    Article  CAS  PubMed  Google Scholar 

  16. Wang, L., Li, J., Jiang, Q., and Zhao, L., Water soluble Fe3O4 nanoparticles with high solubility for removal of heavy-metal ions from waste water, Dalton Trans., 2012, vol. 41, no. 15, p. 4544.

    Article  CAS  PubMed  Google Scholar 

  17. Feng, L., Cao, M., Ma, X., Zhu, Y., and Hu, C., Superparamagnetic high-surface-area Fe3O4 nanoparticles as adsorbents for arsenic removal, J. Hazard. Mater., 2012, vols. 217–218, p. 439.

    Article  PubMed  CAS  Google Scholar 

  18. Srivastava, V., Weng, C.H., Singh, V.K., and Sharma, Y.C., Adsorption of nickel ions from aqueous solutions by nano alumina: Kinetic, mass transfer, and equilibrium studies, J. Chem. Eng. Data, 2011, vol. 56, no. 4, p. 1414.

    Article  CAS  Google Scholar 

  19. Zhang, L., Huang, T., Zhang, M., Guo, X., and Yuan, Z., Studies on the capability and behavior of adsorption of thallium on nano-Al2O3, J. Hazard. Mater., 2008, vol. 157, nos. 2–3, p. 352.

    Article  CAS  PubMed  Google Scholar 

  20. Parida, K., Mishra, K.G., and Dash, S.K., Adsorption of toxic metal ion Cr(VI) from aqueous state by TiO2-MCM-41: Equilibrium and kinetic studies, J. Hazard. Mater., 2012, vols. 241–242, p. 395.

    Article  PubMed  CAS  Google Scholar 

  21. Visa, M., Carcel, R.A., Andronic, L., and Duta, A., Advanced treatment of wastewater with methyl orange and heavy metals on TiO2, fly ash and their mixtures, Catal. Today, 2009, vol. 144, nos. 1–2, p. 137.

    Article  CAS  Google Scholar 

  22. Wang, X., Cai, W., Liua, S., Wang, G., Wu, Z., and Zhao, H., ZnO hollow microspheres with exposed porous nanosheets surface: Structurally enhanced adsorption towards heavy metal ions, Colloids Surf., A, 2013, vol. 422, p. 199.

    Article  CAS  Google Scholar 

  23. Singh, S., Barick, K.C., and Bahadur, D., Novel and efficient three dimensional mesoporous ZnO nanoassemblies for environmental remediation, Int. J. Nanosci., 2011, vol. 10, nos. 4–5, p. 1001.

    Article  CAS  Google Scholar 

  24. Xie, K., Guo, M., Huang, H., and Liu, Y., Fabrication of iron oxide nanotube arrays by electrochemical anodization, Corros. Sci., 2014, vol. 88, p. 66.

    Article  CAS  Google Scholar 

  25. Mohapatra, S.K., Misra, M., Mahajan, V.K., and Raja, K.S., A novel method for the synthesis of titania nanotubes using sonoelectrochemical method and its application for photoelectrochemical splitting of water, J. Catal., 2007, vol. 246, no. 2, p. 362.

    Article  CAS  Google Scholar 

  26. Khan, M.A., Jung, H.T., and Yang, O.B., Synthesis and characterization of ultrahigh crystalline TiO2 nanotubes, J. Phys. Chem. B., 2006, vol. 110, no. 13, p. 6626.

    Article  CAS  PubMed  Google Scholar 

  27. Liang, H. and Li, X., Effects of structure of anodic TiO2 nanotube arrays on photocatalytic activity for the degradation of 2,3-dichlorophenol in aqueous solution, J. Hazard. Mater., 2009, vol. 162, nos. 2–3, p. 1415.

    Article  CAS  PubMed  Google Scholar 

  28. Samarghandi, M.R., Nouri, J., Mesdaghinia, A.R., Mahvi, A.H., Nasseri, S., and Vaezi, F., Efficiency removal of phenol, lead and cadmium by means of UV/ TiO2/H2O2 processes, Int. J. Environ. Sci. Technol., 2007, vol. 4, no. 1, p. 19.

    Article  CAS  Google Scholar 

  29. Wang, W., Varghese, O.K., Paulose, M., and Grimes, C.A., A study on the growth and structure of titania nanotubes, J. Mater. Res., 2004, vol. 19, no. 2, p. 417.

    Article  Google Scholar 

  30. Kolen’ko, Yu.V., Kovnir, K.A., Gavrilov, A.I., Garshev, A.V., Frantti, J., Lebedev, O.I., Churagulov, B.R., Van Tendeloo, G., and Yoshimura, M., Hydrothermal synthesis and characterization of nanorods of various titanates and titanium dioxide, J. Phys. Chem. B., 2006, vol. 110, no. 9, pp. 4030–4038. https://doi.org/10.1021/jp055687u

    Article  CAS  PubMed  Google Scholar 

  31. Moazeni, M., Hajipour, H., Askari, M., and Nusheh, M., Hydrothermal synthesis and characterization of titanium dioxide nanotubes as novel lithium adsorbents, Mater. Res. Bull., 2015, vol. 61, p. 70.

    Article  CAS  Google Scholar 

  32. Vuong, D.D., Tram, D.T.N., Pho, P.Q., and Chien, N.D., Hydrothermal synthesis and photocatalytic properties of TiO2 nanotubes, Physics and Engineering of New Materials, Springer Proceedings in Physics, vol. 127, Cat, D.T., Pucci, A., and Wandelt, K., Eds., Berlin: Springer, 2009, pp. 95–101. https://doi.org/10.1007/978-3-540-88201-5_11

  33. Sreekantan, S. and Wei, L.C., Study on the formation and photocatalytic activity of titanate nanotubes synthesized via hydrothermal method, J. Alloys Compd., 2010, vol. 490, nos. 1–2, p. 436.

    Article  CAS  Google Scholar 

  34. Chen, Y.S., Crittenden, J.C., Hackney, S., Sutter, L., and Hand, D.W., Preparation of a novel TiO2-based p-n junction nanotube photocatalyst, Environ. Sci. Technol., 2005, vol. 39, no. 5, p. 1201.

    Article  CAS  PubMed  Google Scholar 

  35. Kuang, D., Brillet, J., Chen, P., Takata, M., Uchida, S., and Miura, H., Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells, ACS Nano, 2008, vol. 2, no. 6, p. 1113.

    Article  CAS  PubMed  Google Scholar 

  36. Qamara, M., Yoon, C.R., Oh, H.J., Lee, N.H., Park, K., Kim, D.H., Lee, K.S., Lee, W.J., and Kim, S.J., Preparation and photocatalytic activity of nanotubes obtained from titanium dioxide, Catal. Today, 2008, vol. 131, nos. 1–4, p. 3.

    Article  CAS  Google Scholar 

  37. Sekabira, K., Oryem Origa, H., Basamba, T.A., Mutumba, G., and Kakudidi, E., Heavy metal assessment and water quality values in urban stream and rain water, Int. J. Environ. Sci. Technol., 2010, vol. 7, no. 4, p. 759.

    Article  CAS  Google Scholar 

  38. Afkhami, A., Saber-Tehrani, M., and Bagheri, H., Simultaneous removal of heavy metal ions in wastewater samples using nano-alumina modified with 2,4-dinitrophenylhydrazine, J. Hazard. Mater., 2010, vol. 181, nos. 1–3, p. 836.

    Article  CAS  PubMed  Google Scholar 

  39. Taffarel, S.R. and Rubio, J., Removal of Mn2+ from aqueous solution by manganese oxide coated zeolite, Miner. Eng., 2010, vol. 23, no. 14, p. 1131.

    Article  CAS  Google Scholar 

  40. Hu, J., Chen, G.H., and Lo, I.M.C., Selective removal of heavy metals from industrial wastewater using maghemite nanoparticle: Performance and mechanisms, J. Environ. Eng., 2006, vol. 132, no. 7, p. 709.

    Article  CAS  Google Scholar 

  41. Park, J., An, K.J., Hwang, Y.S., Park, J.G., Noh, H.J., Kim, J.Y., Park, J.H., Hwang, N.M., and Hyeon, T., Ultra-large-scale syntheses of monodisperse nanocrystals, Nat. Mater., 2004, vol. 3, p. 891.

    Article  CAS  PubMed  Google Scholar 

  42. Pakarinen, J., Koivula, R., Laatikainen, M., Laatikainen, K., Paatero, E., and Harjula, R., Nanoporous manganese oxides as environmental protective materials – Effect of Ca and Mg on metals sorption, J. Hazard. Mater., 2010, vol. 180, nos. 1–3, p. 234.

    Article  CAS  PubMed  Google Scholar 

  43. Nazari, M., Ghasemi, N., Maddah, H., and Mousavi Motlagh, M., Synthesis and characterization of maghemite nanopowders by chemical precipitation method, J. Nanostruct. Chem., 2014, vol. 4, p. 99.

    Article  Google Scholar 

  44. Fan, M., Boonfueng, T., Xu, Y., Axe, L., and Tyson, T.A., Modeling Pb sorption to microporous amorphous oxides as discrete particles and coatings, J. Colloid Interface Sci., 2005, vol. 281, no. 1, p. 39.

    Article  CAS  PubMed  Google Scholar 

  45. Fu, F. and Wang, Q., Removal of heavy metal ions from wastewaters: A review, J. Environ. Manage., 2011, vol. 92, pp. 407–418.

    Article  CAS  PubMed  Google Scholar 

  46. Teng, S.X., Wang, S.G., Gong, W.X., Liu, X.W., and Gao, B.Y., Removal of fluoride by hydrous manganese oxide-coated alumina: Performance and mechanism, J. Hazard. Mater., 2009, vol. 168, nos. 2–3, p. 1004.

    Article  CAS  PubMed  Google Scholar 

  47. Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T., and Niihara, K., Formation of titanium oxide nanotube, Langmuir, 1998, vol. 14, no. 12, p. 3160.

    Article  CAS  Google Scholar 

  48. Parida, K.M., Kanungo, S.B., and Sant, B.R., Studies on MnO2 chemical composition, microstructure and other characteristics of some synthetic MnO2 of various crystalline modifications, Electrochim. Acta, 1981, vol. 26, no. 3, p. 435.

    Article  CAS  Google Scholar 

  49. Lee, S.K. and Choi, H.S., Spectrophotometric determination of cadmium and copper with ammonium pyrrolidinedithiocarbamate in nonionic Tween 80 micellar media, Bull. Korean Chem. Soc., 2001, vol. 22, no. 5, p. 463.

    CAS  Google Scholar 

  50. Delavar, M., Ghoreyshi, A.A., Jahanshahi, M., Khalili, S., and Nabian, N., Equilibria and kinetics of natural gas adsorption on multi-walled carbon nanotube material, RSC Adv., 2012, vol. 2, no. 10, p. 4490.

    Article  CAS  Google Scholar 

  51. Barakat, M.A. and Kumar, R., Synthesis and characterization of porous magnetic silica composite for the removal of heavy metals from aqueous solution, J. Ind. Eng. Chem. (Amsterdam, Neth.), 2015, vol. 23, p. 93.

  52. Cao, C.Y., Cui, Z.M., Chen, C.Q., Song, W.G., and Cai, W., Ceria hollow nanospheres produced by a template-free microwave-assisted hydrothermal method for heavy metal ion removal and catalysis, J. Phys. Chem. C., 2010, vol. 114, no. 21, p. 9865.

    Article  CAS  Google Scholar 

  53. Engates, K.E. and Shipley, H.J., Adsorption of Pb, Cd, Cu, Zn, and Ni to titanium dioxide nanoparticles: Effect of particle size, solid concentration, and exhaustion, Environ. Sci. Pollut. Res., 2011, vol. 18, no. 3, p. 386.

    Article  CAS  Google Scholar 

  54. Babel, S. and Kurniawan, T.A., Low-cost adsorbents for heavy metals uptake from contaminated water: A review, J. Hazard. Mater., 2003, vol. 97, nos. 1–3, pp. 219–243. https://doi.org/10.1016/S0304-3894(02)00263-7

    Article  CAS  PubMed  Google Scholar 

  55. Zhang, D., Preparation, characterization of nanometer calcium titanate immobilized on aluminum oxide and its adsorption capacity for heavy metal ions in water, Adv. Mater. Res., 2010, vols. 152–153, p. 670.

    Article  CAS  Google Scholar 

  56. Liu, X., Hu, Q., Fang, Z., Zhang, X., and Zhang, B., Magnetic chitosan nanocomposites: A useful recyclable tool for heavy metal ion removal, Langmuir, 2009, vol. 25, no. 1, p. 3.

    Article  CAS  PubMed  Google Scholar 

  57. Pu, X.L., Jiang, Z.C., Hu, B., and Wang, H.B., Gamma-MPTMS modified nanometersized alumina micro-column separation and preconcentration of trace amounts of Hg, Cu Au and Pd in biological, environmental and geological samples and their determination by inductively coupled plasma mass spectrometry, J. Anal. At. Spectrom., 2004, vol. 19, no. 8, p. 984.

    Article  CAS  Google Scholar 

  58. Khraisheh, M.A.M., Al-Degs, Y.S., and McMinn, W.A.M., Remediation of wastewater containing heavy metals using raw and modified diatomite, Chem. Eng. J., 2004, vol. 99, no. 2, p. 177.

    Article  CAS  Google Scholar 

  59. Hu, J., Chen, G.H. and Lo, I.M.C., Selective removal of heavy metals from industrial wastewater using maghemite nanoparticle: Performance and mechanisms, J. Environ. Eng. 2006, vol. 132, no. 7, p. 709.

    Article  CAS  Google Scholar 

  60. Guo, G., He, C., Wang, Z., Gu, F., and Han, D., Synthesis of titania and titanate nanomaterials and their application in environmental analytical chemistry, Talanta, 2007, vol. 72, no. 5, p. 1687.

    Article  CAS  PubMed  Google Scholar 

  61. Maira, A.J., Coronado, J.M., Augugliaro, V., Yeung, K.L., Conesa, J.C., and Soria, J., Fourier transform infrared study of the performance of nanostructured TiO2 particles for the photocatalytic oxidation of gaseous toluene, J. Catal., 2001, vol. 202, no. 2, p. 413.

    Article  CAS  Google Scholar 

  62. Mozia, S., Borowiak-Palen, E., Przepiorski, J., Grzmil, B., Tsumura, T., Toyoda, M., Grzechulska-Damszel, J., and Morawski, A.W., Physico-chemical properties and possible photocatalytic applications of titanate nanotubes synthesized via hydrothermal method, J. Phys. Chem. Solids, 2010, vol. 71, no. 3, p. 263.

    Article  CAS  Google Scholar 

  63. Abou-El-Sherbini, Kh.S., Askar, M.H., and Schöllhorn, R., Hydrated layered manganese dioxide: Part I. Synthesis and characterization of some hydrated layered manganese dioxides from α-NaMnO2, Solid State Ionics, 2002, vol. 150, nos. 3–4, pp. 407–415. https://doi.org/10.1016/S0167-2738(02)00258-8

    Article  CAS  Google Scholar 

  64. Eren, E., Afsin, B., and Onal, Y., Removal of lead ions by acid activated and manganese oxide-coated bentonite, J. Hazard. Mater., 2009, vol. 161, nos. 2–3, p. 677.

    Article  CAS  PubMed  Google Scholar 

  65. Pagnanelli, F., Sambenedetto, C., Furlani, G., Vegliò, F., and Toro, L., Preparation and characterization of chemical manganese dioxide: Effect of the operating conditions, J. Power Sources, 2007, vol. 166, no. 2, p. 567.

    Article  CAS  Google Scholar 

  66. Poudel, B., Wang, W.Z., Dames, C., Huang, J.Y., Kunwar, S., Wang, D.Z., Banerjee, D., Chen, G., and Ren, Z.F., Formation of crystallized titania nanotubes and their transformation into nanowires, Nanotechnology, 2005, vol. 16, p. 1935.

    Article  CAS  Google Scholar 

  67. Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T., and Niihara, K., Titania nanotubes prepared by chemical processing, J. Adv. Mater., 1999, vol. 11, no. 15, p. 1307.

    Article  CAS  Google Scholar 

  68. Su, Q., Pan, B., Wan, S., Zhang, W., and Lv, L., Use of hydrous manganese dioxide as a potential sorbent for selective removal of lead, cadmium, and zinc ions from water, J. Colloid Interface Sci., 2010, vol. 349, no. 2, p. 607.

    Article  CAS  PubMed  Google Scholar 

  69. Ho, Y.S. and McKay, G., Pseudo-second order model for sorption processes, Process Biochem., 1999, vol. 34, no. 5, pp. 451–465. https://doi.org/10.1016/S0032-9592(98)00112-5

    Article  CAS  Google Scholar 

  70. Farghali, A.A., Bahgat, M., Enaiet Allah, A., and Khedr, M.H., Adsorption of Pb(II) ions from aqueous solutions using copper oxide nanostructures, Beni-Suef Univ. J. Basic Appl. Sci., 2013, vol. 2, no. 2, p. 61. https://doi.org/10.1016/j.bjbas.2013.01.001

    Article  Google Scholar 

  71. Robati, D., Pseudo-second-order kinetic equations for modeling adsorption systems for removal of lead ions using multi-walled carbon nanotube, J. Nanostruct. Chem., 2013, vol. 3, no. 1, p. 1.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gh. Bakeri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delavar, M., Bakeri, G., Hosseini, M. et al. Synthesis and Application of Titania Nanotubes and Hydrous Manganese Oxide in Heavy Metal Removal from Aqueous Solution: Characterization, Comparative Study, and Adsorption Kinetics. Theor Found Chem Eng 55, 180–197 (2021). https://doi.org/10.1134/S004057952101005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S004057952101005X

Keywords:

Navigation